研究生: |
孫子硯 Sun, Zih-Yan |
---|---|
論文名稱: |
含銻及硫之過渡金屬 (鉻、鐵、銅) 團簇化合物的合成、轉換關係、化性、物性與理論計算之探討 Group 15 (Sb) or 16 (S)-Containing Transition Metal (Cr, Fe, Cu) Carbonyl Clusters: Synthesis, Transformation, Reactivity, Physical Properties and Computational Studies |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 211 |
中文關鍵詞: | 銻 、鉻 、硫 、鐵 、銅 |
英文關鍵詞: | antimony, chromium, sulfur, iron, copper |
DOI URL: | https://doi.org/10.6345/NTNU202204292 |
論文種類: | 學術論文 |
相關次數: | 點閱:130 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sb‒Cr 系統
當含氫配子之四面體化合物 [HSb{Cr(CO)5}3]2‒ (1-H) 與 HBF4 進行反應,可形成不飽和平面三角形化合物 [Sb{Cr(CO)5}3]‒ (1),並伴隨氫氣的產生。有趣的是,利用液態紫外/可見光光譜得知,化合物 1 具有溶劑化顯色特性。將 1 與親核試劑 KX (X = F, Cl, Br, I, OH)、MeLi、NaBH4 反應,可得一系列路易士加成物 [YSb{Cr(CO)5}3]2‒ (Y = F, 1-F; Cl, 1-Cl; Br, 1-Br; I, 1-I; OH, 1-OH; Me, 1-Me; H, 1-H)。此外,當 1 與有機金屬試劑 [HFe(CO)4]‒ 反應,則可得一 [Fe(CO)4]2‒ 片段取代之含氫配子四面體混合鉻鐵化合物 [HSb{Cr(CO)5}2{Fe(CO)4}]2‒ (2-H)。再者,當 2-H 進行去質子化反應時,可形成不飽和平面三角形化合物 [Sb{Cr(CO)5}2{Fe(CO)4}]‒ (2) 與雙 [Fe(CO)4]2‒ 片段橋接兩個 Sb 之混合鉻鐵產物 [HOSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (3)。最後,藉由電化學、液態以及固態反射式紫外/可見光光譜與 X-ray 吸收近邊緣結構光譜 (XANES),並搭配理論計算來探討此系列化合物之合成、氧化還原行為、光學性質與電子結構特性。
S‒Fe‒Cu 系統
利用 [SFe3(CO)9Cu2(MeCN)2] (1) 與含氮配子 4,4’-dipyridine (dpy)、1,2-bis(4-dipyridyl)ethane (bpea)、4,4’-trimethylenedipyridine (bpp) 進行溶劑輔助研磨 (liquid-assisted grinding, LAG) 反應,可計量形成一系列混合鐵銅羰基之新穎一維聚合物 [SFe3(CO)9Cu2(dpy)3]n (3) 和 [SFe3(CO)9Cu2(bpea)]n (4) 及二維聚合物 [SFe3(CO)9Cu2(MeCN)(dpy)1.5]n (2)、[SFe3(CO)9Cu2(bpea)2]n (5) 與 [SFe3(CO)9Cu2(bpp)2]n (6)。藉由固態反射式光譜可得知此系列聚合物其能隙範圍為 1.44‒1.80 eV,皆具有半導體性質。另外,此系列 S‒Fe‒Cu 聚合物之合成、轉換關係及 Cu 金屬氧化態則藉由 X 光粉末繞射儀 (PXRD)、高解析 X 光電子能譜 (XPS) 與 X 光吸收近邊緣結構光譜 (XANES) 進一步驗證。
Sb‒Cr system
The unsaturated trigonal-planar stibinidene [Sb{Cr(CO)5}3]– (1) was synthesized from the reaction of the tetrahedral hydride complex [HSb{Cr(CO)5}3]2– (1-H) with HBF4, accompanied with the generation of hydrogen. Interestingly, complex 1 exhibited the solvatochromic properties, detected by UV/Vis spectra. The reactions of 1 with different nucleophiles, KX (X = Cl, Br, I, OH), MeLi, and NaBH4, led to the formation of a series of tetrahedral Lewis adducts [YSb{Cr(CO)5}3]2– (Y = F, 1-F; Cl, 1-Cl; Br, 1-Br; I, 1-I; OH, 1-OH; Me, 1-Me; H, 1-H). Moreover, when complex 1 reacted with the organometallic reagent [HFe(CO)4]–, the tetrahedral monosubstituted hydride-containing product [HSb{Cr(CO)5}2{Fe(CO)4}]2– (2-H) was obtained. In addition, when complex 2-H was treated with HBF4, the unsaturated trigonal-planar mixed chromium-iron carbonyl complex [Sb{Cr(CO)5}2{Fe(CO)4}]‒ (2) and Fe(CO)4-bridged dinuclear antimony complex [HOSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (3) were produced. Finally, the synthesis, electrochemistry, UV-Vis absorption, diffuse reflectance spectra, and X-ray absorption near edge structure (XANES) of these Sb‒Cr complexes were studied with the aid of DFT calculations.
S‒Fe‒Cu system
When [SFe3(CO)9Cu2(MeCN)2] (1) was treated with stoichiometric 4,4’-dipyridine (dpy), 1,2-bis(4-dipyridyl)ethane (bpea), and 4,4’-trimethylenedipyridine (bpp) via liquid-assisted grinding (LAG) method, a new series of organometallic-organic hybrid polymers, namely, two 1D polymers [SFe3(CO)9Cu2(MeCN)(dpy)1.5]n (2) and [SFe3(CO)9Cu2(bpea)]n (4) and three 2D polymers [SFe3(CO)9Cu2(dpy)3]n (3), [SFe3(CO)9Cu2(bpea)2]n (5), and [SFe3(CO)9Cu2(bpp)2]n (6), were obtained quantitatively. Moreover, the diffuse reflectance spectra showed that 2-6 had semiconducting behaviors with energy gaps in the range of 1.44‒1.80 eV. In addition, the formation, transformation, and oxidation state of Cu atom of these polymers were elucidated by powder X-ray diffraction (PXRD), X-ray photonelectron spectroscopy (XPS), and X-ray absorption near edge structure (XANES) analyses.
第一章
1. (a) Albano, V. G.; Cané, M.; Iapalucci, M. C.; Longoni, G. J. Organomet. Chem. 1991, 407, C9‒C12. (b) Hal, J. W.; Alemany, L. B.; Whitmire, K. H. Inorg. Chem. 1997, 36, 3152‒3159.
2. (a) Cassidy, J. M.; Whitmire, K. H. Inorg. Chem. 1989, 28, 2494‒2496. (b) Kircher, P.; Huttner, G.; Heinze, K. J. Organomet. Chem. 1998, 562, 217‒227.
3. Rutsch, P.; Huttner, G. Angew. Chem. Int. Ed. 2000, 39, 2118‒2120.
4. Huttner, G.; Weber, U.; Sigwarth, B.; Scheidsteger, O.; Lang, H.; Zsolnai, L. J. Organomet. Chem. 1985, 282, 331‒348.
5. Herberhold, M.; Reiner, D.; Neugebauer, D. Angew. Chem. Int. Ed. 1983, 22, 59─60.
6. Shieh, M.; Chu, Y.-Y.; Hsu, M.-H.; Ke, W.-M.; Lin, C.-N. Inorg. Chem. 2011, 50, 565‒575.
7. Cherng, J.J.; Lee, G. H.; Peng, A. M.; Ueng, C. H.; Shieh, M. Organometallics 2000, 19, 213‒215. (b) Cherng, J.-J.; Lai, Y.-W.; Peng, S.-M.; Ueng, C.-H.; Shieh, M. Inorg. Chem. 2001, 40, 1206‒1212.
8. Lee, H.; Lee, J. W.; Kim, D. Y.; Park, J.; Seo, Y. T.; Zeng, H.; Moudrakovski, I. L.; Ratcliffe C. I.; Ripmeester, J. A. Nature 2005, 434, 743‒746.
9. (a) Hirai, M.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2015, 54, 1205‒1209. (b) Kim, Y.; Gabbaï, F. P. J. Am. Chem. Soc. 2009, 131, 3363‒3369. (c) Wade, C. R.; Ke, I. S.; Gabbaï, F. P. Angew. Chem. Int. Ed. 2012, 51, 478‒481. (d) Hirai, M.; Gabbaï, F. P Chem. Sci., 2014, 5, 1886‒1893.(e) Jones, J. S.; Wade, C. R.; Gabbaï, F. P Organometallics 2015, 34, 2647‒2654.
10. (a) Opris, L. M.; Preda, A. M.; Varga, R. A.; Breunig, H. J.; Silvestru, C. Eur. J. Inorg. Chem. 2009, 1187‒1193. (b) Clegg, W.; Compton, N. A.; Errington, R. J.; Hockless, D. C. R.; Norman, N. C.; Ramshaw, M.; Webster, P. M. J. Chem. Soc., Dalton Trans. 1990, 2375‒2385. (c) Breunig, H. J., Lork, E.; Moldovan, O.; Wagner, R. Z. Anorg. Allg. Chem. 2008, 634, 1397‒1402.
11. Shieh, M.; Cherng, J.-J.; Lai, Y.-W.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Eur. J. 2002, 8, 4522‒4527.
12. Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 3rd ed.; Harper & Row, Publishers: New York, 1983; Chapter 3, pp 144‒146.
13. Weber, U.; Zsolnai, L.; Huttner, G. Z. Naturforsch., B: Chem. Sci. 1985, 40, 1430‒1436.
14. Whitmire, K. H.; Shieh, M.; Cassidy, J. Inorg. Chem. 1989, 28, 3164‒3170.
15. Collins, B. E.; Koide, Y.; Schauer, C. K.; White, P. S. Inorg. Chem. 1997, 36, 6172‒6183.
16. Henderson, P.; Rossignoli, M.; Burns, R. C.; Scudder, M. L.; Craig, D. C. J. Chem. Soc., Dalton Trans. 1994, 1641‒1647.
17. Darensbourg, M. Y.; Deaton, J. C. Inorg. Chem. 1981, 20, 1644‒1646.
18. Bringewski, F.; Huttner, G.; Imhof, W.; Zsolnai, L. J. Organomet. Chem. 1992, 439, 33‒44.
19. Goh, L. Y.; Chen, W.; Wong, R. C. S.; Chem. Commun., 1999, 1481‒1482.
20. Carty, A. J.; Taylor, N. J.; Coleman, A. W.; Lappert, M. F. J.C.S. Chem. Comm., 1979, 639‒640.
21. Breunig, H. J.; Lork, E.; Rat, C. I.; Wagner, R. P.; J. Organomet. Chem. 2007, 692, 3430‒3434.
22. Breunig, H. J.; Borrmann, T.; Lork, E.; Moldovan, O.; Rat, C. I.; Wagner, R. P. J. Organomet. Chem. 2009, 694, 427‒432.
23. Breunig, H. J.; Jonsson, M.; Rosler, R.; Lork, E.; J. Organomet. Chem. 2000, 608, 60‒62.
24. Benjamin, S. L.; Levason, W.; Reid, G.; Warr, R. P. Organometallics 2012, 31, 1025‒1034.
25. Breunig, H. J.; Denker, M.; Ebert, K. H. J. Organomet. Chem. 1994, 470, 87‒92.
26. Vogel, U.; Baum, G.; Scheer, M. Z. Anorg. Allg. Chem., 2000, 626, 444‒449.
27. Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A 2009, 113, 5806─5812.
28. 邢凱捷,國立臺灣師範大學碩士論文,2015。
29. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735─746.
30. Wiberg, K. B. Tetrahedron 1968, 24, 1083─1096.
31. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
32. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90‒92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827‒1837.
33. (a) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. L. C. Inorg. Chem. 1978, 17, 297‒301.(b) Smith, M. B.; Bau, R. J. Am. Chem. Soc. 1973, 95, 2388‒2389.
34. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
35. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
36. (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
37. (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155–2160. (b) Becke, A. D. J. Chem. Phys. 1992, 97, 9173–9177. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
39. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664‒675.
40. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899─926.
41. Gorelsky, S. I. AOMix program, http://www.sg-chem.net/.
第二章
1. (a) Jin, H.; Qi, Y.; Wang, E.; Li, Y.; Wang, X.; Qin, C.; Chang, S. Crystal Growth & Design, 2006, 6, 2693‒2698. (b) Yaghi, O. M.; Li, H. J. Am. Chem. Soc., 1996, 118, 295–296. (c) Cheetham, A. K.; Ferey, G.; Loiseau, T. Angew. Chem. Int. Ed. 1999, 38, 3268‒3292. (d) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127‒1129.
2. (a) Koshevoy, I. O.; Chang, Y.-C.; Karttunen, A. J.; Haukka, M.; Pakkanen, T.; Chou, P.-T. J. Am. Chem. Soc. 2012, 134, 6564‒6567. (b) Lasanta, T.; Olmos, M. E.; Laguna, A.; López-de-Luzuriaga, J. M.; Naumov, P. J. Am. Chem. Soc. 2011, 133, 16358‒16361. (c) Friščić, T.; Halasz, I.; Štrukil, V.; Eckert-Maksić, M.; Dinnebier, R. E. Croat. Chem. Acta 2012, 85, 367‒378. (d) Mo, L.-Q.; Jia, J.-H.; Sun, L.-J.; Wang, Q.-M. Chem. Commun. 2012, 48, 8691‒8693.
3. (a) Braga, D.; Giaffreda, S. L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Dalton Trans. 2006, 1249‒1263. (b) Kole, G. K.; Vittal, J. J. Chem. Soc. Rev. 2013, 42, 1755‒1775.
4. Lin, C. N.; Jhu, W. T.; Shieh, M. Chem. Commun., 2014, 50, 1134‒1136.
5. 黃宇薪,國立臺灣師範大學碩士論文,2007。
6. 李旻憲,國立臺灣師範大學碩士論文,2010。
7. Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7–13.
8. 李育緯,國立臺灣師範大學碩士論文,2009。
9. 傅怡瑄,國立臺灣師範大學碩士論文,2013。
10. 陳偉成,國立臺灣師範大學碩士論文,2007。
11. Shieh, M.; Huang, C. Y.; Lee, C. J.; Hsing, K. J.; Li, Y. W.; Chu, Y. I.; Jhu, W. T. Polyhedron, 2013, 52, 879–889.
12. Zhigui, Z.; Lixin, W.; Hengbin, Z.; Ling, Y.; Yuguo, F. Eur. J. Solid State Inorg. Chem., 1991, 28, 1269.
13. Cherng, J. J.; Tsai, Y. C.; Ueng, C. H.; Lee, G. H.; Peng, S. M.; Shieh, M. Organometallics, 1998, 17, 255–261.
14. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
15. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90‒92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827‒1837.
16. 張惟傑,謝明惠,未發表之結果。
17. 李旻憲,國立臺灣師範大學碩士論文,2010。
18. Blessing, R. H. Acta Crystallogr. 1995, A51, 33‒38.
19. Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen: Germany, 1997.
20. (a) Kubelka, P.; Munk, F. Z. Tech. Phys., 1931, 12, 593‒601. (b) Tauc, J. Mater. Res. Bull., 1970, 5, 721‒729.
附錄 A
1. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
2. Shieh, M.; Cherng, J.-J.; Lai, Y.-W.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Eur. J. 2002, 8, 4522─4527.
3. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90─92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827─1837.
4. 邢凱捷,國立臺灣師範大學碩士論文,2015。