簡易檢索 / 詳目顯示

研究生: 陳金珮
論文名稱: 氮化鎵在DNA感測上之應用
GaN for DNA-sensing Applications
指導教授: 陳貴賢
Chen, Kuei-Hsien
林麗瓊
Chen, Li-Chyong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 氮化鎵氮化鎵去氧核醣核酸感測器
論文種類: 學術論文
相關次數: 點閱:402下載:47
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵,它是一種重要的光電材料,這是因為其為直接寬能隙(3.4eV)的半導體材料。最近它有許多在感測器上的應用,例如:
    高功率場效應晶體管和微電子裝置。然而三族氮化物具有化性不活潑且生物相容性已經被大家所知道,所以這樣的特性可以運用在三族氮化物半導體為基礎的生物感測器。在本論文中,為了建構氮化鎵去氧核醣核酸感測器,我們將已經矽氧烷化之氮化鎵表面藉由雙硫鍵與末端硫化的寡核酸鍵結 。進而從接觸角的量測、原子力顯微鏡、x光光電子能譜術、共軛焦光學顯微鏡、高解析穿透式電子顯微鏡等分析技術可以確認DNA分子可以藉由共價鍵的方式固定到氮化鎵表面。由電化學阻抗的分析,可以證明DNA分子固定到氮化鎵表面並且可以辨別出單股DNA和雙股DNA之間的差異。從螢光光譜(PL)分析,可觀測到當雙股DNA鍵結到單股DNA修飾的氮化鎵表面時會有螢光熄滅的現象產生。這意味著氮化鎵同時具有電化學以及光學上DNA的感測特性,相較於氮化鎵薄膜,氮化鎵奈米線具有較高的偵測靈敏度,適於未來之生物感測之應用。

    In this report, the applicability of the III-nitride-based materials as a semiconductor-based biosensors is demonstrated. Generally, GaN is considered as potential candidate for optoelectronic material because it is a wide direct band gap (3.4 eV) semiconductor. Recently, a lot of interest has been developed on its sensor-application, e.g. high power FETs and microelectronic devices. Furthermore, group III-nitrides are known for their chemical inertness and bio-compatibility, which leads to the realization of biosensors based on III-nitrides semiconductor. In this work, GaN is used for the construction of a DNA-sensing material by immobilizing thiol-terminated oligonucleotides onto a mercaptosilane-modified GaN surface by using disulfide bonds.The covalent bond attachment of thiol-modified DNA oligomers to MPTS-modified GaN surface has proved by contact angle measurement, atomic force microscopy (AFM), X-ray photoelectron spectroscopy(XPS), confocal optical microscope(COM),and high-resolution transmission electron microscopy (HR-TEM).Using electrochemical impedance measurement, it is possible to observe the immobilized DNA molecules on the GaN surface and discriminate between ss and ds DNA. Quenching of photoluminescence signal has been observed when a ss-DNA modified GaN subjected to ds-DNA modification. This demonstrates that surface modified GaN can perform as a sensor for DNAs. Comparative to GaN this films, GaN NWs is one case have higher sensivity for DNA –sensing, which one highly desirable for bio-sensing applications.

    目錄 第一章、緒論…………………………………………………… 1 第一節、生物奈米科技簡介…………………………………… 1 第二節、DNA的基本特性與應用………………………………… 6 1-2.1:DNA分子模板技術與辨識組裝………………………. 7 1-2.2:核酸電腦……………………………………………… 8 第三節、DNA官能化之一維奈米材料的特性與應用………….. 9 1-3.1:DNA與奈米管…………………………………………. 11 1-3.2:DNA與奈米線…………………………………………. 13 第四節、研究動機……………………………………………… 15 第二章、實驗方法……………………………………………… 18 第一節、氮化鎵奈米線製備…………………………………… 18 第二節、氮化鎵表面修飾………………………………………. 19 2-2.1:材料與藥品…………………………………………… 20 2-2.2:表面氧化……………………………………………… 21 2-2.3:矽氧烷化表面的製備………………………………… 21 2-2.4:金奈米粒子的鍵結…………………………………… 22 2-2.5:探針Oligonucleotide的鍵結……………………… 22 2-2.6:雜合反應……………………………………………… 25 第三節、分析技術與儀器簡介………………………………… 27 2-3.1:光激發螢光光譜儀 ( PL )…………………………… 27 2-3.2:化學分析影像能譜儀(ESCA)………………………… 29 2-3.3:穿透式電子顯微鏡 ( TEM )………………………… 31 2-3.4:原子力顯微鏡(AFM)…………………………………. 33 2-3.5:共軛焦光學顯微鏡(COM)…………………………… 35 2-3.6:電阻抗分析技術(EIA)………………………………. 38 第三章、實驗結果分析與討論………………………………… 39 第一節、氮化鎵表面修飾………………………………………. 39 3-1.1 :氧化表面的特性……………………………………. 39 3-1.2 :矽氧烷化與金奈米粒子的鍵結…………………… 41 第二節、去氧核醣核酸官能化氮化鎵奈米線的特性探討…… 48 3-2.1:表面鍵結之分析……………………………………… 48 (A) 共軛焦螢光顯微鏡(COM)………………………. 48 (B) 原子力顯微鏡(AFM)分析………………………. 52 3-2.2:電阻抗之分析………………………………………… 59 3-2.3:光學性質之分析……………………………………… 63 第四章、結論…………………………………………………… 74 參考文獻

    參考文獻
    [1]科學人雜誌 全觀奈米新世界 2003,11遠流出版
    [2]C.D.Montemagno,Nanotechnology,1999,10,225
    [3]A.P.Alivisatos,Science,1998,281,2013
    [4]A.W.Bosman,E.W.Meijer,Chem.Rev.,1999,1665
    [5]AVERITT RD,PHYSICAL REVIEW LETTERS ,78,4217
    [6]Y.Cui,C.M. Leiber,Science,2001,293,1289
    [7]牛頓,1985,25,74
    [8]張嘉豪,呂世源,利用生物模板合成無機材料及自組裝,生技專欄
    [9]C.M.Nyemeyer,Current opinion in Chemical biology,2004,4,609
    [10]C.R.Mirkin,L.Letsinger,Nature,1996,382,607
    [11]王瑋銘,國立台灣師範大學化學研究所,台灣,2004
    [12]ANDREAS HRTL,MARTIN STUTZMANN,Nature Materials,2004,3,736
    [13]F.Patolsky,Charles M. Lieber,PNAS 2004,101,14017
    [14]C.A.Mirkin,Inorg.Chem.,2000,39,2258
    [15]Iijima S,Nature 1991,354,56
    [16]Charles R.Martin,Science,2002,296,2198
    [17]Charles R.Martin,Science,2004,305,984
    [18]S.J.Tans,C.Dekker,Nature,1998,393,49
    [19]A.C.Dillon,M.J. Heben,Nature,1997,386,377
    [20]S.S.Wong,C.M.Lieber,Nature,1998,394,
    [21]R.J.Chen,H.Dai,J.Am.Chem.Soc.,2001,123,3838
    [22]S.E.Baker,R.J.Hamers,Nano.Lett.,2002,2,1413
    [23]J.Li,M.Meyyappan,Nano Letters,2003,3,597.
    [24]E.Braun,G.Ben-Yoseph,Nature,1998,391,755
    [25]D.Zhang,C.Zhou,Nano Letters,2004,4,9315
    [26]K.Ramanathan,A.B.Mulchandani,J.Am.Chem.Soc,2005,127,2,96
    [27]Jong-in Hahm,Charles M.Lieber,Nano Letters,2004,1,51
    [28]S.Nakamura,M.Seno,Appl.Phys.Lett.,1991,58,2021
    [29]M.Stutzmann,Diamond and related materials,2002.11,886
    [30]Ioanna Gherghi,NiKos Chaniotakis,A Novel DNA Biosensor Based on GaN Transducer,2005
    [31]National Reasearch Development Corporation,Immobilised
    Polynucleotides,Patent WO 91/00868,1991
    [32]許志偉,國立台灣師範大學化學研究所,台灣,2003
    [33]G.Fren,Nat.Phys.Sci.,1973,241,20
    [34]李建武等合編,生物化學實驗原理和方法,藝軒圖書出版社,1999,77
    [35]潘扶民,中國材料科學學會,第十三章,材料分析
    [36]單分子量測專題科儀新知第二十五卷第五期
    [37]Round,Atomic Force Mcroscopy.H.H.Wills Physics
    Laboratory,University of Bristol(2004)
    [38]Park Scientific Instruments Corp., Users Guide to Autoprobe CP, Part II, http://www.park.com.,NT-MDT Corp.
    SPM introduction, http://www.ntmdt.ru.,Digital Instruments Corp., Data Sheets, http://www.di.com.
    B.Cappella,G.Dietler,Surf.Sci.Reports,1999,34,1
    M.Tortonese,IEEE Eng,Med.Biol.,1997,16,28,.,
    [39]物理雙月刊(廿三卷二期)2001年4月
    [40]張炳華,成大醫學工程研究所,電阻抗分析法於生物式樣的檢測
    [41]V.J.Morris,A.R.Kirby,A.P.Gunning,Atomic Force Microscopy for Biologists
    [42]R.Lenigk,N.J.Sucher,Langmuir,2001,17,2497
    [43]J.M. Kim,T. Kawaia,Analytica Chimica Acta,2004,525,151
    [44]D.Erts,E.Tuite,J Phys Chem B,2003,107,3591
    [45]M.Magonov,SurfaceSci.Lett.,1997,375,L385
    [46]M.Argaman,H.G.Hansma,Nucleic Acids Research,1997,25,4379
    [47]H.G.Hansma,R.A.Garcia, Struct. Biol,1997,119,99
    [48]K.R.Hagerman,P.J.,Hagerman,J.Mol.Biol.1996,260,207
    [49]A.J.Bard,L.R.Faulkner,Electrochemical methods:fundamentals and applications,2nd ed;John Wiley and Sons:Hoboken,NJ,2001
    [50]M.A.Reshchikov,M.P.Ulmer,J.Appl.Phys.2000,87,3351
    [51]U.Kaufmann,B.Santic,Phys.Rev.B,1999,59,5561
    [52]S.Dhara,L.C.Chen,Appl.Phys.Lett,2004,84,3486
    [53]R.R.Chandler,P.T.Snowden,J.Phys.Chem.,1992,96,2113
    [54]G.J.Meyer,A.B.Ellis,J.Am.Chem.Soc.,1988,110,4914.
    [55]G.C.Lisensky,A.B.Ellis,Science1990,248,840.
    [56]L.Spanhel,A.Henglein,J.Am.Chem.SOC.1987,109,5654.
    [57]A.R.Kortan,L.E.Brus,J.Am.Chem.SOC.1990,112,1327.
    [58]T.Dannhauser,G.J.McLendon,Phys.Chem.,1986,90,6074.
    [59]R.Chandler,J.L.Coffer,J.Phys.Chem.,1991,95,4.

    QR CODE