簡易檢索 / 詳目顯示

研究生: 吳致緯
Wu, Zhi-Wei
論文名稱: 結晶岩地下水水資源開發之力學評估:以臺灣和平與金門為例
Mechanical Study on the Exploitation of Groundwater Resources in Crystalline Rocks: Examples of Heping and Kinmen areas, Taiwan
指導教授: 葉恩肇
Yeh, En-Chao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 118
中文關鍵詞: 和平金門滑動趨勢擴張趨勢剪切趨勢
英文關鍵詞: Hoping, Kinmen, Slip tendency, Dilation tendency, Shear tendency
DOI URL: https://doi.org/10.6345/NTNU202203262
論文種類: 學術論文
相關次數: 點閱:242下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣本島與金門離島地區時常可以看到缺水的訊息,因此需要一些解決的方案,比如製造人造雨、抽取地下水與地球物理探勘尋找地下水層等。目前利用地層裡的裂隙與現地應力場的關係來找尋地下水源是前人尚未著墨的一環,其方法對於結晶岩非常適用,因結晶岩孔隙率少,蓄水量較低,但通常其裂隙孔隙率較高,含水量相對較高,所以,裂隙的分布與其活動性對於結晶岩地下水的水資源開發與使用相當重要。因現地應力場會影響裂隙的生長方式與是否再活化,故本研究以臺灣花蓮和平變質花崗岩以及金門花崗岩與片麻岩為例,整合地表與井下裂隙分布之位態以及現地應力資料,以地質力學觀點評估裂隙的滑動與擴張趨勢,進而評估潛在導水裂隙的分布與位態,以利後續水資源開發。
      花蓮和平地區位處於臺灣大南澳片岩的太魯閣帶,主要岩層為晚古生代至中生代變質花崗岩與大理岩,僅有少數沖積層、金門島位處於福建沿海的平潭東山變質帶,絕大多岩層為中生代花崗岩與片麻岩,僅有少數沖積層。因為地層岩性、海島地形、氣候環境與人為開發之關係,金門地下水水資源相對匱乏。
      前人於臺灣花蓮和平地區以岩心進行非彈性應變回復實驗,結果顯示為東北-西南拉張的正斷層應力場,地表裂隙統計位態以東西向與東北-西南為主,而井下裂隙則是與平行葉理面的位態居多。整合前人金門水力破裂實驗與本研究岩心直徑變形分析結果,其整合應力場為325度擠壓的走向滑移應力場,其最大、次大與最小應力場梯度依序為37.39、25.77、21.78MPa/km。地表裂隙統計位態主要以東西向和東北-西南向的走向為主,以及少數的其他方向,井下裂隙位態則是以東西向和西北-東南向為主。
      裂隙的產生以及再活化與現地應力場有密切關係,若裂隙因現地應力產生或活化並連通則可能成為導水裂隙。同時藉由地溫梯度異常處來尋找導水裂隙位置。並利用現地應力場可以計算裂隙的滑動趨勢與擴張趨勢,位於擴張趨勢值為0.8以上的高擴張趨勢裂隙是有助於流體流動。
    金門地表地區於南雄(NS-1)法線投影位態042˚/ 32˚、新塘(ST-1)裂隙法線投影位態150˚/ 61˚與峰上裂隙法線投影位態123˚/ 90˚三組高擴張趨勢的裂隙與金門淺層地下水流向方向一致,此三組裂隙為導水裂隙。金門一號井(BH01)、金門二號井(BH02)與金門四號井(BH04)等三口井下裂隙與井測微流速資料進行比對,結果顯示金門一號井(BH01)井下於0~80m、193m、350m與400~500m,金門二號井(BH02)井下0~70m,金門四號井(BH04)井下0~80、350與440~500m等深度有大量不同位態的裂隙存在,微流速資料也在這些深度有明顯改變,故這些深度為導水裂隙。
    和平井下於149.5m有地溫梯度異常並有平行葉理之鏽染裂隙,此結果與井下電阻率與孔隙率進行比對,149.5m的裂隙可能是具有高可信度的導水裂隙。
      和平井下裂隙大部份位於0.6~0.8之間的擴張趨勢,裂隙寬度相對於其他擴張趨勢值的裂隙寬。
      將滑動趨勢加入抗張強度後,進而定義出剪切趨勢,和平井下構造在剪切趨勢的現今應力場並不會產生滑動,演算和平井下裂隙的可能生成環境。參考前人資料顯示有兩種生成深度,其一為地下3.17km處,最大應力、次大應力與最小應力分別為84.49MPa、64.29MPa與55.19MPa,液壓範圍為60MPa。其二為地下9.5km處,最大應力、次大應力與最小應力分別為253.08MPa、192.66MPa與165.40MPa,液壓範圍為161MPa。
    綜合上述結果,金門地表、井下與和平井下區域皆有導水裂隙。利用張裂趨勢計算得知和平井下裂隙生長環境,以利後續水資源開發。

    Taiwan Island and the Kinmen Islands region can often see information about the lack of water so need to rainmaking, extraction of groundwater and geophysical exploration to find the groundwater layer for solutions. This research selected crystalline rocks in Hoping and Kinmen areas of Taiwan. Then, to integrate data of fractures distribution, attitude and in-situ stress from surface survey and underground study by geomechanics for estimating the tendencies of slip and dilation of fractures. Understanding the characteristics of potential fluid conduits is useful the exploitation of groundwater resources. Intact crystalline rocks of low porosity possess lower water storage. Conversely, fractured crystalline rocks contain higher groundwater resources. Therefore, knowledge of distribution and characteristics of fractures is important to the exploitation of groundwater resources in crystalline rocks.
      Hoping is located in the NE Taroko belt of the Tananao metamorphic complex in Taiwan mountain belt. The formations in downstream area of Hoping River contain late Paleozoic to Mesoic meta-granites and marbles, and few alluvium strata. Kinmen island closed to SE Chain is located in Pingtan-Dongshan Metamorphic Belt of Late Yanshan orogeny. The formations contain Mesozoic granite, gneiss, various dikes, and some alluviums. Because of lithology, island topography, climatic characteristics and human development, groundwater resources become a serious issue in Hoping and Kinmen, Taiwan.
      Previous studies had conducted experiments of anelastic strain recovery on retrieved cores in Hoping. The results show that the maximum principal stress is vertical and the horizontal minimum stress is in NE-SW orientation, indicating a normal faulting stress regime with NE-SW extension. Most fractures are in E-W and NE-SW orientations that fractures of borehole are more attitude than parallel foliation plane.
    Results of hydraulic fracturing experiments and Diameter Core Deformation Analysis(DCDA) in Kinmen display the maximum and intermediate stress is in NW-SE orientation and vertical, respectively, suggesting strike-slip faulting regime with NE-SW extension. Most fractures are in E-W and NE-SW orientations and some are in other orientations. The stress field gradient are 37.39 MPa/km, 25.77 MPa/km and 21.78MPa/km.
      The re-activation of fracture are closely related to the in-situ stress field. If the fracture produce open filling fluid conduits by the stress. Then, position of depth of open filling fluid conduits search by anomaly geothermal gradient. However, the in - situ stress field can calculate the slip tendency and dilation tendency. The dilation tendency value is more than 0.8 to contribute the fluid to flow.
      The fracture of high dilation tendency are the same with shallow groundwater flow direction that is termed open filling fluid conduits. The pole attitude of open filling fluid conduits of Kinmen are 042˚/ 32˚ on Nanxion-1, 150˚/ 61˚ on ST-1 and 123˚/ 90˚ on Fengshang. Three borehole fractures were compared with the groundwater resistance logging data that display different attitude of fracture on BH01 at 0-80m, 193m, 350m, 400-500m, on BH02 at 0-70m and on BH04 at 350m.
    Hoping have anomaly geothermal gradient and weathered fracture of parallel foliation on borehole at 149.5m. This results are high credibility open filling fluid conduits on 149.5m from porosity and resistivity of borehole.
      On borehole fracture of Hoping are dilation tendency between 0.3 and 0.65. The results of extension tendency show that borehole fracture of Hoping don’t effect in-situ stress field to produce to extension.
      Slip tendency and tensile strength could define the shear tendency. Borehole fracture of Hoping didn’t produce slip on in-situ stress field. Previous studies had maximum stress of 84.49MPa, intermine stress of 64.29MPa and minimon stress of 55.19MPa on borehole of 3.17km that the hydraulic pressure range is 60MPa. Another and 83.98MPa. Another result are maximum stress of 253.08MPa, intermine stress of 192.66MPa and minimum stress of 165.40MPa on borehole of 9.5km that the hydraulic pressure range is 161MPa.
      Analysis of well logging data and tracer experiments will provide further insights into evaluating the existence as well as the distribution and attitude of fluid conduits. The results establish the basis for exploitation and utilization of groundwater resources in Hoping and Kinmen areas, Taiwan.

    誌謝……………………………………………………………………………………I 摘要……………………………………………………………………………....…...II ABSTRACT...………………………………………..................................................IV 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 研究位置與交通 5 第二章 地質背景 7 2.1. 地質區域背景 7 2.2. 金門區域地質背景 9 2.2.1.金門應力場 11 2.2.2.金門裂隙資料 15 2.2.3.金門岩石物理性質資料 21 2.3. 和平區域地質背景 22 2.3.1.和平現地應力 25 2.3.2.和平裂隙 27 2.3.3.和平HCHB01井下電測 29 第三章 研究方法 31 3.1. 岩心直徑變形分析實驗方法 34 3.2. 井下構造判釋 39 3.2.1.孔內攝影井測(Borehole camera) 39 3.2.2.孔內攝影解析 39 3.3. 裂隙滑動與擴張活化趨勢分析及軟體操作 45 3.3.1.滑動趨勢與擴張趨勢 45 3.3.2.3D-Stress軟體操作流程 49 3.4. 井下地溫梯度 53 第四章 結果 55 4.1. 金門現地應力 55 4.1.1.岩心直徑變形分析-軸差應力(SHmax-Shmin)結果 55 4.1.2.金門應力場平均 58 4.2. 和平HCBH01孔內攝影影像之井下構造判釋結果 62 4.2.1.葉理面 62 4.2.2.閉合裂隙 64 4.2.3.平行葉理之開口裂隙 66 4.2.4.截切葉理之開口裂隙 68 4.2.5.平行葉理之鏽染裂隙 70 4.2.6.截切葉理之鏽染裂隙 72 4.2.7.礦脈 74 4.2.8.所有構造 76 4.3.滑動趨勢與擴張趨勢結果圖 78 4.3.1.金門滑動趨勢與擴張趨勢 78 4.3.2.和平滑動趨勢與擴張趨勢 81 4.3.2.1.和平地表裂隙滑動趨勢與擴張趨勢 83 4.3.2.2.和平HCBH01井下構造滑動趨勢與擴張趨勢 84 4.3.2.2.1. 葉理面 84 4.3.2.2.2. 閉合裂隙 85 4.3.2.2.3. 平行葉理之開口裂隙 86 4.3.2.2.4. 截切葉理之開口裂隙 87 4.3.2.2.5. 平行葉理之鏽染裂隙 88 4.3.2.2.6. 截切葉理之鏽染裂隙 89 4.3.2.2.7. 礦脈 90 4.4. 溫度異常與井下裂隙 91 第五章 討論 93 5.1. 和平井下導水裂隙與井測資料比對 93 5.2. 金門井下裂隙與井測資料比對 96 5.3. 金門地表擴張趨勢與淺層地下水比較 101 5.4. 和平井下構造寬度與擴張趨勢之關聯性 103 5.5. 和平井下構造生成液壓 106 第六章 結論 109 參考文獻 111 附錄 口試委員提問與答覆 117

    Anderson, E. M. (1905) The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387-402.
    Angelier, J. (1986) Geodynamics of the Eurasian-Philippine Sea Plate Boundary. Special Issue, Tectonophysics, 125, IX-X.
    Barton, C. A., Zoback, M. D., and Moos, D. (1995) Fluid flow along potentially active faults in crystalline rock. Geology, 23(8), 683-686, doi: 10.1130/0091-7613.
    Byerlee, J. (1978) Friction of rocks. Pure and applied geophysics, 116(4-5), 615-626.
    Chen, C. H., Lin, W., Lan, C. Y., and Lee, C. Y. (2004) Geochemical, Sr and Nd isotopic characteristics and tectonic implications for three stages of igneous rock in the Late Yanshanian (Cretaceous) orogeny, SE China. Geological Society of America Special Papers, 389, 237-248.
    Chen, W. S., Yang, H. C., Wang, X., and Huang, H. (2002) Tectonic setting and exhumation history of the Pingtan–Dongshan Metamorphic Belt along the coastal area, Fujian Province, Southeast China. Journal of Asian Earth Sciences, 20(7), 829-840.
    Davis, S. N. (1969) Porosity and permeability of natural material, Flow through porous media, 53-89.
    Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., and Morris, A. P. (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. GSA Today, 9(5), 1-8.
    Funato, A., and Chen, Q., (2005) Initial stress evaluation by boring core deformation method. Proceedings of the 34th symposium on Rock Mechanics. JSCE, 261‐266. (in Japanese)
    Funato, A., Ito, T., and Shono, T. (2012) Laboratory verification of the diametrical core deformation analysis (DCDA) developed for in‐situ stress measurement. 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 12‐588.
    Funato, A., Ito, T., and Mikami, H. (2014) Laboratory verification of the Diametrical Core Deformation Analysis (DCDA) developed for in-situ stress measurements. Journal of MMU, 130, 515-521.
    Hsu, K. J., Li, J., Chen, H., Wang, Q., Sun, S. and Sengor, A.M.C (1990), Tectonic Evolution of the Tethyan Region. Kluwer, Dordrecht, p. 551-565.
    Hu, J. C., Yu, S. B., Chu, H. T., and Angelier, J. (2002) Transition tectonics of northern Taiwan induced by convergence and trench retreat. Special Papers-Geological Society of America, 147-160.
    Ito, T., Funato, A., Lin, W., Doan, M. L., Boutt, D. F., Kano, Y., Ito, H., Saffer, D., McNeill, L. C., Byme, T., and Moe, K. T. (2013) Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis: A case study in the IODP Expedition 319. Journal of Geophysical Research: Solid Earth, 118(3), 1203-1215, doi:10.1002/jgrb.50086.
    Jolie, E., Moeck, I., and Faulds, J. E. (2015) Quantitative structural–geological exploration of fault-controlled geothermal systems—A case study from the Basin-and-Range Province, Nevada (USA). Geothermics, 54, 54-67, doi:10.1016/j.geothermics.2014.10.003.
    Krech,W. W., Henderson, F. A. and Hjelmstad, K. E. (1974) Standard rock suite for rapid excavation research, Rep. Invest. U.S. Bur. Mines, RI7865, 29p.
    Lisle, R. J., and Srivastava, D. C. (2004) Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32(7), 569-572, doi:10.1130/G20408.1.
    Morris, A., Ferrill, D. A., and Henderson, D. B. (1996) Slip-tendency analysis and fault reactivation. Geology, 24(3), 275-278.
    Nguyen, M. T., Mii, H. S., Yeh, E. C., Lin, C. Y., Fang, J. N., and Lin, W. (2016) Study of Fluid Source and P-T Conditions of Mineral Deposits in the Hoping Area, eastern Taiwan. American Geophysical Union’s 48th annual Fall Meeting, T23A-2903.
    Smith, G. C. and Gidlow, P. M. (1987) Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9), 993-1014.
    Yen, T. P. (1954) The gneisses of Taiwan. Bulletin of the Geological Survey of Taiwan, 5, 1-100.
    Yen, T.P. (1960) A stratigraphical study on the Tananao Schist in northern Taiwan. Bulletin of the Geological Survey of Taiwan, 12, 53-66.
    Yu, S. B. and Tsai, Y. B. (1979) Geomagnetic anomalies of the Ilan Plain, Taiwan. Petroleum Geology of Taiwan, 16, 19-27.
    Zhou, X. M., and Li, W. X. (2000) Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3), 269-287.
    小笠原美津雄 (1933) 大南澳圖幅說明書(縮尺十萬分之一圖幅第二號)。台灣總督府殖產局,第656號。
    尤崇極、施清芳、張坤城、宋國良、鄧仁傑、張福麟與劉建麟 (1991) 結晶岩區地質驗證調查 (金門地區) 報告書。原子能委員會核能研究所。
    台灣電力公司 (2013) 用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-101年度計畫成果報告。台灣電力公司,共285頁。
    台灣電力公司 (2014) 用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-102年度計畫成果報告。台灣電力公司,共360頁。
    台灣電力公司 (2015) 用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-103年度計畫成果報告。台灣電力公司,共317頁。
    市村毅 (1941) 金門島的地質(概要)。台灣地學記事,第12卷,2-3號,第27-37頁。
    江東晉 (2015) 利用井下資料探討彰濱工業區二氧化碳地質封存場址特徵。國立臺灣師範大學地球科學系碩士論文,共66頁。
    李偉誠 (2015) 非彈性應變回復法評估花蓮和帄地區及彰濱工業區之現地應力場。國立臺灣師範大學地球科學系碩士論文,共228頁。
    林朝彥 (2015) 花蓮和平溪下游變質花崗岩之脆韌性與脆性構造研究與其地質意義。國立臺灣師範大學理學院地球科學研究所碩士論文,共106頁。
    林蔚 (2001) 華南沿海晚燕山期侵入岩漿活動及大地構造意義。國立臺灣大學地質科學研究所博士論文,共236頁。
    林蔚、陳文山、楊明宗與歐陽湘 (2005) 我國用過核子燃料長程處置潛在母岩特性調查與評估階段─潛在母岩特性調查(93年計畫)潛在母岩特性調查。工業技術研究院能源與資源研究所,共169頁,SNFD-ERL-90-219。
    林蔚、李寄嵎、楊小青與陳正宏 (2012) 臺灣地質說明書-金門地區。經濟部中央地質調查所,共57頁。
    徐夕生、周新民與王德滋 (1999) 殼幔作用與花崗岩成因-以中國東南沿海為例。高校地質學報,第5卷,第3期,第241-250頁。
    郭明錦 (2004) 地熱資源。科學發展,第383期,第14-19頁。
    郭泰融、張傳聖、董倫道、李奕亨、陳文山與黃炎聰 (2003) 用過用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-潛在母岩特性調查(91年度計畫)K區地球物理井測。工業技術研究院能源與資源研究所,共194頁,SNFD-ERL-90-195。
    陳文山、謝佩珊、林蔚、林鎮國、黃淞洋與余錦昌 (2012) 用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段-潛在母岩特性調查(99~101年度計畫)HCBH01地質鑽探及岩心井錄分析成果報告。財團法人工業技術研究院,共159頁,SNFD-GEL-90-284。
    陳文山、黃淞洋、劉致育、李奕亨、謝佩珊、林蔚與林鎮國 (2015) 用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段潛在母岩特性調查(101-103年度計畫) HCBH01裂隙特性研究FY101~103執行成果報告。財團法人工業技術研究院,共256頁,SNFD-ITRI-90-308。
    陳培源 (1970) 金門島及烈嶼地質說明書。經濟部金門地質礦產測勘對工作報告,第7-19頁。
    黃淞洋 (2008) 地表及井下不連續面參數分析與數值模擬─以金門東部花崗片麻岩體為例。國立中正大學地震研究所暨應用地球物理研究所碩士論文,共144頁。
    楊小青 (1998) 中國東南平潭-東山變質帶之氬同位素熱定年研究。國立台灣大學地質學研究所博士論文,共178頁。
    楊明宗、柳志錫、沈振南、林棋財、楊敏順與呂金玉 (2003) 我國用過核燃料長程處置潛在母岩特性調查與評估階段─潛在母岩特性調查計畫(91年計畫)K區(BH1及BH2)岩石力學報告。工業技術研究院能源與資源研究所,共82頁,SNFD-ERL-90-199。
    劉佩琨、宋國士 (2003) 台灣東南地區海陸地形特徵及其構造意義。海洋學刊,第41期,第97-126頁。
    歐陽湘、林鎮國、蔣立為、郭泰融、楊任徵、林蔚、劉建宏、張育德、張傳聖、楊明宗、羅聖宗、蘇毓秀、陳文山、許 誠與李清瑞 (2003) 我國用過核燃料長程處置潛在母岩特性調查與評估階段潛在母岩特性調查(91年計畫) 期末報告。工業技術研究院能源與資源研究所,共213頁,SNFD-ERL-90-209。
    歐陽湘、林鎮國、蔣立為、郭泰融、楊任徵、林蔚、吳建宏、錢正明、張育德、張傳聖、楊明宗、蘇毓秀、陳文山、許 誠與李清瑞 (2005) 我國用過核燃料長程處置潛在母岩特性調查與評估階段潛在母岩特性調查(93年計畫) 期末報告。工業技術研究院能源與資源研究所,共212頁,SNFD-ERL-90-228。
    羅偉、何恭睿 (2012) 台灣中央山脈東翼地區和平溪以南的地質調查與地質特性。地工技術,第131期,第15-22頁。

    下載圖示
    QR CODE