研究生: |
鍾曉蘭 Chung, Shiao-Lan |
---|---|
論文名稱: |
建模教學的課室分析與學生概念改變--以晶體與分子間作用力為例 Analysis of classroom context and students ' conceptual change through modeling-based instruction – An example of crystals and intermolecular acting force |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
博士 Doctor |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 364 |
中文關鍵詞: | 建模為基礎的教學 、建模歷程 、多重表徵的模型 、概念改變 、課室分析 |
英文關鍵詞: | modeling-based instruction, Modeling processes, multi-representational models, conceptual change, class context analysis |
DOI URL: | https://doi.org/10.6345/NTNU202204653 |
論文種類: | 學術論文 |
相關次數: | 點閱:297 下載:146 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
模型(Model)與建模(Modeling)是科學發展的重要元素,也是科學學習中不可或缺的認知與能力,本研究探究在實施建模教學前,教師設計教學的歷程;評估建模與模型教學活動對學生學習的影響,以及學生在學習過程中概念改變的歷程;探索不同的課室活動中,教師的教學模式與學生學習成效、概念改變之間的關係。本研究以三種不同的課室教學活動(建模與多重表徵模型教學組、建模組、對照組),探討高三學生在學習晶體與分子間引力相關概念的過程中對於晶體與分子間作用力的相關概念、晶體模型的想法、建模能力與解釋能力四個面向的概念改變情形。研究對象為新北市某公立高中高三自然組學生共計108位學生,三組皆進行為期二週(10節課)的教學活動。分析資料來源分為教學錄影帶(課室分析)與紙筆測驗兩大類型,紙筆測驗又細分為晶體模型問卷、形成性評量與學習問卷三大部分。主要研究結果彙整如下:
1. 三組經過五節課的教學後,教學中測驗的結果為概念方面進步最多,解釋方面進步最少,僅對照組建模能力略微退步。三組的中測以前測為共變數進行ANCOVA test,以LSD進行事後考驗,考驗結果皆達顯著差異。概念方面顯著性考驗結果為F(2, 106)= 11.46, p=.000;解釋方面顯著性考驗結果為F(2, 106)=11.20, p=.000;建模能力方面顯著性考驗結果為F(2, 106)=19.42, p=.000;整體表現顯著性考驗結果為F(2, 106)=24.59, p=.000。概念、建模能力與整體表現皆為建模與多重表徵模型教學組顯著優於建模組,建模組顯著優於對照組。解釋方面則為兩組實驗組之間無顯著差異,兩組實驗組皆顯著優於對照組。
2. 經過十節課的教學後,三組仍持續進步,進步幅度增加,但在解釋方面待加強。三組的後測以前測為共變數進行ANCOVA test,以LSD進行事後考驗,考驗結果皆達顯著差異。概念方面顯著性考驗結果為F(2, 106)=21.50, p=.000;解釋方面顯著性考驗結果為F(2, 106)=20.06, p=.000;建模能力方面顯著性考驗結果為F(2, 106)=24.87, p=.000;整體表現顯著性考驗結果為F(2, 106)= 28.29, p=.000。概念、解釋、建模能力與整體表現皆為建模與多重表徵模型教學組顯著優於建模組,建模組顯著優於對照組。結果顯示同時使用建模與多重表徵模型活動更有助於複雜科學概念的理解。
3. 三組學生經教學後對於模型本體、模型表徵、模型功用與建模歷程的想法多半呈現正向的提升,特別是模型功用與建模歷程的同意度呈現高度同意,但三組後對於數學關係式能表徵晶體模型與量化關係來分析晶體模型的正確性同意度仍偏低。
4. 兩組實驗組學生認為建模歷程的教學活動有助於概念的理解與解決問題能力的提升,對於具體模型活動則持高度正向的同意度。
本研究建議科學教師在課室活動中可以採用建模與多重表徵的模型教學,並透過課室師生的討論活動,幫助學生藉由不同表徵的模型與建模歷程,以系統性的方式學習抽象而複雜的科學概念。
Model and modeling are important elements to science development and science education. This study explored the instructional design process before the implementation of modeling teaching and evaluated the impacts of modeling-based teaching on students’ conceptual change. Building on this research base, the current study was intended to guide students to learn concepts about crystals and intermolecular acting force by means of modeling processes―model selection, model construction, model validation, model analysis, model application, model deployment and model reconstruction (Chiu & Chung, 2010; Halloun, 1996) with the use of multi-representational models approaches (e.g., visual models, concrete models, gestural models, mathematical models, and verbal models). The research adopted a quasi-experimental design to study three groups of twelfth graders: (1) a modeling-based teaching and multi-representational models group (MM group, n = 37), (2) a modeling-based teaching group (M group, n = 37), and (3) a conventional teaching group (C group, n = 34). Three assessments (before, during, and after teaching) were conducted. The three groups used the same textbook and were each engaged in ten 50-minute teaching sessions. There were two tpyes of research tools: teaching videos (analyze class context) and paper-and-pencil tests. Paper-and-pencil tests were divided into questionnaire for crystal models, formative assessment, and learning questionnaire.
The results of this study were as follows:
First, ANCOVA results revealed that there were significant differences among the three groups in terms of students’ concepts (F(2, 106)=16.89, p=.000) and modeling capabilities (F(2, 106)=19.42, p=.000) in the during-instruction test. The post hoc result (LSD) was MM>M>C.
Second, ANCOVA results revealed that there were significant differences among the three groups in terms of the students’ concepts (F(2, 106)=24.20, p=.000), explanation capabilities (F(2, 106)=20.06, p=.000) and modeling capabilities (F(2, 106)=24.87, p=.000) in the posttest. The post hoc result (LSD) was MM>M>C.
Third, students’ ideas for model natures, model representations, model functions, and modeling processes improved after teaching.
Fourth, the two experiment groups’ students think that modeling-based activities could improve concepts understanding and problem-solving skills.
The research results support the assertion that modeling-based learning experiences are helpful to the learning of scientific concepts and enable students to learn how to systematically perceive such concepts and revise their misconceptions. The research findings indicate that using multiple modeling approaches for teaching should be encouraged for meaningful learning of concepts related to crystals and intermolecular acting force for secondary students.
中文部分
王嘉瑜(2016)。科學模型與建模:科學建模的教學方式。台灣化學教育電子期刊,2016,3(1)。
李建會(1995)。還原論、突現論與世界的統一性。科學技術與辯證法,12(5),5-8。
呂益準(2005)。以混成軌域之電腦多媒體教導學生判斷分子形狀(未出版碩士論文)。國立臺灣師範大學,臺北市。
邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊,306,2-9。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
邱美虹(2015)。以系統化方式進行模型與建模能力之線上教學與評量系統-探討科學課程、概念發展路徑與建模能力之研究(未出版)。科技部計畫報告。
邱美虹(2016)。科學模型與建模:科學模型、科學建模與建模能力。台灣化學教育電子期刊,2016,3(1)。
邱美虹、林秀蓁(2004)。以 CHILDES 分析一對一科學教學活動中師生互動共建科學知識的行為表現。科學教育學刊,12(2),133-158。
邱美虹、吳文龍、鍾曉蘭與李雪碧(2013)。以概念演化樹探討跨年級學生理想氣體心智模式之發展歷程。科學教育學刊,21(2), 135-162。
邱美虹、傳化文(1993)。分子模型與立體化學的解題。科學教育學刊,1(2),161-188。
邱美虹、廖焜熙(1996)。立體化學與空間能力。化學,52(2),145-151。
邱美虹和劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
林靜雯和邱美虹(2008)。從認知/方法論之向度初探高中學生模型與建模歷程之知識。科學教育月刊,307,9-14。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
吳明珠(2004)。從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例(未出版博士論文)。國立臺灣師範大學,臺北市。
吳明珠(2008)。科學模型本體分析:認識論面向初探。科學教育月刊,307,2-8。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
周金城(2008)。探究中學生對於科學模型的分類與組成本質的理解。科學教育月刊,306,10-17。(轉載自論文發表於中華民國科學教育學術研討會,2007,高雄:國立高雄師範大學科學教育研究所)。
武杰、李宏芳 (2000)。非線性是自然界本質嗎?科學技術與辯證法,17(2),1-5。
洪朝欽(1999)。非線性統動力系統--秩序、混沌、複雜與自我組織。科學月刊,1999年2月號。引自科學月科全文資料庫:http://163.20.22.161/Science/。
范冬萍 (2005a)。突現論的類型及其理論訴求—複雜性科學與哲學的視野。科學技術與辯證法,22(4),49-53。
范冬萍 (2005b)。突現論性質的下向因果關係。哲學研究,7,108-114。
范冬萍、張華夏 (2005)。突現理論:歷史與前沿。自然辯證法研究,21(6),5-10。
陳瑞麟(2003)。科學與世界之間:科學哲學論文集。臺北市:學富文化事業有限公司。
陳瑞麟(2004)。科學理論版本的結構與發展。臺北市:臺大出版中心。
陳盈吉(2004)。探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子為例(未出版碩士論文)。國立臺灣師範大學,臺北市。
陳婉茹(2004)。探討動態類別對於化學平衡概念學習之研究-八年級學生概念本體及心智模式之變化(未出版碩士論文)。國立臺灣師範大學,臺北市。
湯偉君和邱美虹(2007):複雜系統、突現及其對科學教育的啟示。科學教育月刊,301,17-25。
湯偉君(2008)。以解釋本質探討中學演化論之教科書內容與教學(未出版博士論文)。國立臺灣師範大學,臺北市。
湯偉君和邱美虹(2010)。省思科學教學—由解釋、科學解釋類型的觀點。科學教育研究與發展季刊,59,1-22。
張又升(2009):突現的概念。政大研學論壇。2012/10/20引自http://blog.roodo.com/nccugsa/8253918e.pdf
張志康和邱美虹(2009)。建模能力分析指標的發展與應用—以電化學為例。科學教育學刊,17(4),319-342。
劉俊庚和邱美虹(2010)。從建模觀點分析高中化學教科書中原子理論之建模歷程及其意涵。科學教育研究與發展季刊,59,23-52。
劉俊庚(2011)。探討模型與建模對於學生原子概念學習之影響(未出版博士論文)。國立臺灣師範大學,臺北市。
鍾曉蘭(2007)。以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑(未出版碩士論文)。國立臺灣師範大學,臺北市。
鍾曉蘭和邱美虹(2012)。高二學生在理想氣體多重表徵教學前後心智模式的改變。教育科學研究期刊,57(4),73-101。
鍾曉蘭和謝進生(2008)。以科展進行高二學生氣體動力論之科學學習及概念改變─氣體粒子運動模型組vs電腦動畫組。96學年度教育部中小學科學教育專案結案報告(未出版)。國立三重高中,臺北縣。
鍾曉蘭和謝進生(2010)。設計建模與多重表徵的模型教學活動以增進高二學生的科學學習-以化學鍵、分子混成軌域、分子形狀與結構為例。98學年度教育部中小學科學教育專案結案報告(未出版)。國立三重高中,臺北縣。
Strauss, A. & Corbin, J.著,吳芝儀與廖梅花譯(2001)。紮根理論研究方法。臺北市:濤石。
英文部分
Andersen H .(2001). The history of reductionism versus holistic approaches to scientific research. Endeavour, 25(4), 153-156.
Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2-3), 131-152.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
Boo, H. K.(1998). Students’ understandings of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35(5), 569-581.
Boulter, C. J., & Buckley, B. C.(2000). Constructing a typology of models for science education. In J. K. Gilbert & C. J. Boulter (eds.), Developing models in Science Education, (pp.41-57). Netherlands: Kluwer academic Publisher.
Burr, V. (2003). Social Constructionism. New York: Routledge.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.) Cognitive Models of Science: Minnesota studies in the Philosophy of Science (pp.129-186). Minnesapolis, MN: University of Minnesota Press.
Chi, M.T.H. (2005). Common sense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Science, 14, 161-199.
Chi, M.T.H., & Roscoe, R.D. (2002). The process and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice. (pp.3-27). Netherlands: Kluwer Academic Publishers.
Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M. and Chase, C. C. (2012). Misconceived Causal Explanations for Emergent Processes. Cognitive Science, 36, 1–61.
Chi, M. T. H, Siler, S.A., & Jeong, H.(2004). Can tutors monitor students’ understanding accurately? Cognition and Instruction, 22(3), 363-387.
Chiu, M. H., & Chung, S. L. (2013).The use of multiple perspectives of conceptual change to investigate students’ mental models of gas particles. In G. Tsaparlis & H. Sevian (Ed.) Concepts of Matter in Science Education (pp.143-168). Netherlands: Springer
Chittleborough, G. D., Treagust, D. F., Mamiala, T. L., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science & Technological Education, 23(2), 195-212.
Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22(9), 1041–1053.
Clement, J. J., & Rea-Ramirez, M. A. (Eds.) (2008). Model based learning and instruction in science. Dordrecht, NL: Springer.
Coll, R. K., & Taylor, N. (2002). Mental models in chemistry: senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and Practice in Europe, 3(2), 175-184.
de Posada, J. M. (1997). Conceptions of high school students concerning the internal structure of metals and their electric conduction: Structure and evolution. Science Education, 81(4), 445-467.
Gibbin, J. (2005). Deep Simplicity: Chaos, Complexity and the Emergence of Life. U.S: Penguin book.
Giere, R.N. (2004). How models are used to represent reality. Philosophy of Science, 71, 742–752.
Gilbert, J. K. (1993). Models and modeling in science education. Hatfield: The Association for Science Education.
Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (ed.), Visualization in Science Education (pp. 9-27). Netherlands: Springer.
Gilbert, J. K., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
Gilbert, J. K., & Boulter, C., J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert and C. J. Boulter (eds.) Developing Models in Science Education (pp. 3-17). Dordrecht/Boston/London: Kluwer Academic Publishers.
Gilbert, J. K., & Justi, R. (2016). Modelling-based Teaching in Science Education. In J.K. Gilbert & R. Justi (Eds.), Models and Modeling in Science Education 9 (pp.81-96). Switzerland: Springer.
Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In J. K. Gilbert, & D. Treagust (eds.). Multiple representations in Chemical Education (pp.1-8). Dordrecht: Springer.
Goldstein, J. (1999). Emergence as a Construct: History and Issue. Emergence, 1(1) 49-72.
Goldstone, R. L. (2006). The complex systems see-change in education. The Journal of the Learning Sciences, 15(1), 35-43.
Gobert, J., Snyder, J. & Houghton, C. (2002, April). The Influence of Students’ Understanding of Models on Model-Based Reasoning. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LO.
Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
Halloun, I. A. (1996) Schematic modelling for meaningful learning of physics. Journal of Research in Science Teaching. 33, 1019-1041.
Halloun, I. A. (2006). Modeling Theory in Science Education. Netherlands: Springer.
Harrison, A. G., & Treagust. D. F. (2000a). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
Harrison, A. G., & Treagust. D. F. (2000b). Learning about atoms, molecules, and chemical bonds:A case study of multiple-model use in grade 11 chemistry, Science Education, 84, 352-381.
Harrison A. G., & De Jong. O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135–1159.
Hestenes, D. (1992). Modeling games in the newtonian world. Am. J. Phys., 60, 732-748.
Hmelo-Silve, C.E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. The Journal of the Learning Sciences, 15(1), 53-61.
Hmelo-Silve, C.E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the perspective of structures, behaviors, and functions. Cognitive Science, 1, 127-138.
Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complex. MA: Addison-Wesley.
Holland, J. H. (1998), Emergence from Chaos to Order. New York: Oxford University Press.Harrison, A. G., & Treagust, D. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80(5), 509-534.
Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. The Journal of the Learning Sciences, 15(1), 11-34.
Johnson-Laird, P. N.(1983).Mental models. Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge, UK:Cambridge University Press.
Johnson-Laird, P. N. (1999). Formal rules versus mental models in reasoning. In R. J. Sternberg (Ed.), The nature of cognition (pp. 586-624). Cambridge, MA: MIT Press.
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75-83.
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changingdemand. Journal of Chemical Education, 70(9), 701-705.
Johnstone, A. H. (2000). Chemical education research: Where from here? University Chemistry Education, 4(1), 34-38.
Justi, R. S. (2000). Teaching with Historical Models. In J. K. Gilbert & C. J. Boulter (eds.), Developing models in Science Education, (pp.209-226). Netherlands: Kluwer academic Publisher.
Justi, R. S., & Gilbert, J. K. (2002). Modeling, teachers’ views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.
Justi, R. S. & Gilbert, J. K. (2003), Teachers' views on the nature of models, International Journal of Science Education, 25(11), 1369-1386.
Kim, J. (1999). Making sense of emergency. Philosophical studies, 95, 3-36.
Kim, J. (2006). Emergence: Core ideas and issues. Synthese, 151, 547-559.
Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16, 751–773.
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.
Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 949–968.
Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht, The Netherlands: Springer.
Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630.
Nahum, T. L., Mamlok-Naaman, R., Hofstein, A., & Krajcik, J. (2007). Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge. Science Education, 91, 579-603.
National Research Council (1996). National Science Education Standards. Washington, DC: National Academy.
National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nerssian, & P. Thagard (eds.), Models are used to represent reality. New York: Kluwer Academic Publishers.
Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 17–34). Cambridge: Cambridge University Press.
Nersessian, N. J., & Patton, C. (2009). Model-based reasoning in interdisciplinary engineering. In A. Mcijers (Ed.), Handbook of the philosophy of technology and engineering sciences (pp. 687 – 718). Amsterdam: Elsevier.
Nicoll, G. (2001). A report of undergraduates’ bonding misconceptions. International Journal of Science Education, 23(7), 707-730.
Niss, M. (2009). Metamodelling messages conveyed in five statistical mechanical textbooks from 1963 to 2001. International Journal of Science Education, 31(5), 697-719.
Ogborn, J. (1994). Overview: the nature of modelling. In H. Mellar, J. Bliss, R. Boohan, J. Ogborn, & C. Tompsett (eds.), Learning with artificial worlds: computer basedmodelling in the curriculum (pp.11-15). Hong Kong: Graphicraft
Oh, P. S. & Oh, S. J. (2011).What Teachers of Science Need to Know about Models: An overview. International Journal of Science Education, 33(8), 1109-1130.
Peterson, R. F., & Treagust, D. F. (1989). Development and application of a diagnostic instrument to evaluate grade-11 and –12 students’ concepts of covalent bonding and structure following a course of instruction. Journal of Research in Science Teaching, 26(4), 301-314.
Prigogine, I. & Stengers, I. (1984), Order Out of Chaos: Man’s New Dialogue With Nature, New York: Bantam Books.
Resnick, M. (1996). Beyond the centralized mindset. The Journal of the Learning Sciences, 5, 1-22.
Salmon, W. C. (1998). Causality and explanation. New York, NY: Oxford University.
Sterelny, K., & Griffiths, P. E. (1999). Sex and death: An introduction to philosophy of biology. Chicago, IL: The University of Chicago.
Schwarz, C., & White, B. (2005). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165 – 205.
Tan, K-C. D., & Treagust, D. F. (1999). Evaluating students’ understanding of chemical bonding, School Science Review, 81(294), 75-81.
Taber, K. S. (1995). Development of Student Understanding: a case study of stability and lability in cognitive structure, Research in Science & Technological Education, 13(1), 89-99.
Taber, K. S. (2002). Compounding quanta: probing the frontiers of student understanding of molecular orbitals. Chemistry Education: Research and Practice in Europe, 3(2), 159-173.
Taber, K. S., & Coll, R. (2002). Bonding. In J. K. Gilbert, O. D. Jong, R. Justy, D. F. Treagust, & J. H. Van Driel (eds.), Chemical education: towards research-based practice (pp. 213-234). Dordrecht: Kluwer.
Talanquer, V. (2007). Explanations and Teleology inChemistry Education. International Journal of Science Education, 1-18. DOI: 10.1080/09500690601087632
Thagard, P. (1992). Conceptual revolution. Princeton: Princeton University Press.
Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
Treagust, D. F., & Harrison, A. G. (2000). In search of explanatory frameworks: An analysis of Richard Feynman's lecture 'Atoms in motion'. International Journal of Science Education, 22(11), 1157-1170.
Vosniadou, S., Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
Vosniadou, S.(1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
Vosniadou, S.(2002). On the nature of naive physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 61-76). Dordrecht, the Netherlands: Kluwer Academic.
Vosniadou, S., Skopeliti, I., & Ikospentaki K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19, 203-222.
Waldrop, M. M. (1992). Complexity: The emerging science at the edge of chaos and order. New York: Touchstone.
Wilensky, U. (1999). NetLogo [computer software]. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University (http://ccl.northwestern.edu/netlogo)
Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems perspective to making sense of the world. Journal of Science Education and Technology, 8(1), 3-19.
Wilensky, U. & Reisman, K. (2006). Thinking Like a Wolf, a Sheep or a Firefly: Learning Biology through Constructing and Testing Computational Theories -- an Embodied Modeling Approach. Cognition & Instruction, 24(2), 171-209.
Zhang, B. H., Liu, X., & Krajcik, J. S. (2006). Expert Models and Modeling Processes Associated with a Computer Modeling Tool. Science Education, 90(4), 579-604.