簡易檢索 / 詳目顯示

研究生: 林周廷
Lin, Chou-Ting
論文名稱: 多功能奈米銀光電性質應用於 單一材料複合有機氣體感測陣列之研製
Single Material Hybrid Sensors Array Employing Monolayer Protected Silver nano-Cluster for Organic Vapor Sensing
指導教授: 呂家榮
Lu, Chia-Jung
口試委員: 呂家榮
Lu, Chia-Jung
劉茂煌
Liu, Mao-Huang
李慧玲
Lee, Hui-Ling
口試日期: 2020/07/15
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: MPC材料局部表面電漿共振阻抗式感測器石英微量天平螢光
英文關鍵詞: MPC material, LSPR, Chemiresistor, QCM, Fluorescence
DOI URL: http://doi.org/10.6345/NTNU202100561
論文種類: 學術論文
相關次數: 點閱:104下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分成三個部分進行有機氣體的感測:第一部分是於玻片上修飾奈米銀單層薄膜,比較單層奈米銀薄膜與外圍修飾C12-SH薄膜兩者的感測訊號。二是有機相MPC粒子Ag@C12的合成,作為阻抗式(CR)、局部表面電漿共振 (LSPR)感測。與第一部分不同的是將裝置微小化,利用市售感測器取代光譜儀並搭配設計電路將訊號有效放大,解決使用市售光譜儀的高成本問題。第三部分則以2-mercaptobenzothiazole (MBT) 進行部分取代,合成Ag@C12/MBT,可作為阻抗式、局部表面電漿共振、螢光、質量式複合陣列之氣體感測。過往的研究多以不同MPC材料構成單一感測陣列式,而此論文最大的不同是以單一MPC材料進行四種不同類型的感測。由實驗結果顯示,Ag@C12/MBT對於9種不同有機氣體選擇性均不同,因此可藉由不同感測類型來提升該材料對有機氣體的辨識度。

    This study is divided into three parts for organic vapor sensing: the first part is to modify the nano silver single-layer film on the glass slides, and compare the sensing signals of single-layer nano silver films and peripheral modified C12-SH films. The second is the synthesis of organic phase MPC particles Ag@C12, used as Chemiresistor (CR) and Localized Surface Plasmon Resonance (LSPR) gas sensing. The difference from the first part is to minimize the whole devices, using a commercially available sensor to replace the spectrometer, and design the circuit to effectively amplify the signal to solve the high cost of using the commercially available spectrometer. The third part is partially substituted with 2-mercaptobenzothiazole (MBT) to synthesize Ag@C12/MBT, which can be used for gas sensing of CR, LSPR, fluorescence (FL), and quartz crystal microbalance (QCM) arrays. In the past studies, different MPC materials were used to form a single gas sensing test. The difference in this paper is a single MPC material used for four different types of sensing. The study results show that Ag@C12/MBT has different selectivity for 9 different vapor sensing. Therefore, the recognition of the Volatile Organic Gases (VOCs) can be elevated by different sensing types.

    第一章 緒論 1 1.1研究背景 1 1.2 研究動機與研究問題 2 1.3 奈米材料的基本性質 3 1.3.1奈米材料 3 1.3.2表面效應 4 1.3.3量子尺寸效應 5 1.3.4光學性質 5 1.4 表面電漿共振原理 8 1.4.1漸逝波(Evanescent wave) 8 1.4.2表面電漿波原理及現象 10 1.4.3 LSPR感測相關應用 12 1.5有機相奈米材料的製備與感測 16 1.5.1兩相合成法簡介 16 1.5.2奈米團簇表面置換法簡介 17 1.5.3阻抗式化學感測器 (Chemiresistor) 18 感測原理 18 1.5.4 MPC於氣體感測的應用 21 1.6 螢光 (Fluorescence) 的原理與應用 22 1.6.1螢光的原理與性質 22 1.6.2螢光感測的相關應用 24 1.7石英微量天平Quartz Crystal Microbalance(QCM) 27 1.7.1壓電效應(Piezoelectric effect) 27 1.7.2石英晶體的性質 28 1.7.3 QCM原理介紹 29 1.7.4 QCM近年感測應用 31 第二章 實驗部分 34 2.1 實驗藥品、器材與儀器設備 34 2.1.1 實驗藥品 34 2.1.2 實驗器材 36 2.1.3 儀器設備 37 2.2 奈米銀粒子的製備及實驗架構 41 2.2.1水相奈米銀粒子的製備 41 2.2.2有機相奈米銀粒子 (Ag@C12) 的製備 42 2.2.3有機相奈米銀粒子 (Ag@C12/MBT) 的製備 43 2.2.4實驗架構 44 2.3自組裝奈米銀粒子 45 2.3.1 玻璃片表面清洗 45 2.3.2 APTMS表面修飾 45 2.3.3奈米銀粒子表面修飾 46 2.4 LSPR玻片感測部分 47 2.4.1氣體感測裝置暨系統建立 47 2.4.2 UV-Vis 吸收光譜的設定 48 2.4.3 LabVIEW程式-電磁閥控制 49 2.4.4 絕對差值總和法 (Total Absolute Differences : TAD) 50 2.4.5 LabVIEW程式-數據處理 51 2.5 阻抗式感測器 53 2.5.1阻抗式感測器前處理 53 2.5.2基本電阻量測 54 2.5.3感測電路及LabVIEW程式撰寫 55 2.6 微小化感測裝置部分 57 2.6.1螢光及LSPR感測之微小化 57 2.6.2感測電路的設計 58 2.7石英微量天平 (QCM) 感測 59 2.7.1 QCM感測前處理 59 2.7.2感測電路的連接及LabVIEW程式撰寫 59 第三章 實驗結果與討論 62 3.1 水相奈米銀粒子及感測分析 62 3.1.1 奈米銀粒子自組裝於玻璃表面之分析 62 3.1.2 奈米銀粒子自組裝感測器再現性測試 63 3.1.3 水相奈米銀感測器靈敏度比較 64 3.1.4 水相奈米銀修飾DDT感測器靈敏度比較 68 3.2 有機相奈米銀粒子材料分析 71 3.2.1有機相奈米銀粒子Ag@C12及Ag@C12/MBT 71 3.2.2 Ag@C12及Ag@C12/MBT螢光分析 74 3.3 Ag@C12有機氣體感測 76 3.3.1 阻抗式感測訊號 76 3.3.2 阻抗式感測對6種氣體感測分析 78 3.3.3 LSPR感測訊號 80 3.3.4 LSPR對6種氣體感測分析 82 3.3.5 Ag@C12感測靈敏度比較 83 3.4 Ag@C12/MBT複合有機氣體感測 85 3.4.1 阻抗式感測部分 85 3.4.2 QCM感測部分 88 3.4.3 LSPR感測部分 92 3.4.4 螢光感測部分 94 3.4.5 Ag@C12/MBT複合感測靈敏度分析 97 第四章 結論與未來展望 100 參考文獻 101

    1. Nakashima, H.; Nakajima, D.; Takagi, Y.; Goto, S., Volatile organic compound (VOC) analysis and anti-VOC measures in water-based paints. Journal of Health Science 2007, 53 (3), 311-319.
    2. Sun, X.; Dong, S.; Wang, E., Large‐scale synthesis of micrometer‐scale single‐crystalline Au plates of nanometer thickness by a wet‐chemical route. Angewandte Chemie International Edition 2004, 43 (46), 6360-6363.
    3. Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M., Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chemistry of Materials 2005, 17 (3), 566-572.
    4. Kubo, R., Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan 1962, 17 (6), 975-986.
    5. 李冠儀, 奈米金-氧化矽多層結構應用於有機氣體光學探針之研製. 2016.
    6. Mie, G., Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys 1908, 25 (3), 377-445.
    7. Mayer, K. M.; Hafner, J. H., Localized surface plasmon resonance sensors. Chemical Reviews 2011, 111 (6), 3828-3857.
    8. 鄭嘉升. 奈米金屬薄膜表面電漿共振光譜之有機氣體反應特性研究. 輔仁大學, 新北市, 2006.
    9. 邱瑋懿. 以化學表面修飾法增強局部表面電漿共振感測器對氣體之反應. 國立臺灣師範大學, 台北市, 2015.
    10. 張瑋真. 表面電漿共振原理應用於氣液相化學偵測器之研製. 國立臺灣師範大學, 台北市, 2013.
    11. Cheng, C. S.; Chen, Y. Q.; Lu, C. J., Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta 2007, 73 (2), 358-365.
    12. Chen, K. J.; Lu, C. J., A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 2010, 81 (4-5), 1670-1675.
    13. Cai, K.; Zhang, W.; Zhang, J.; Li, H.; Han, H.; Zhai, T.; interfaces, Design of gold hollow nanorods with controllable aspect ratio for multimodal imaging and combined chemo-photothermal therapy in the second near-infrared window. ACS Applied Materials 2018, 10 (43), 36703-36710.
    14. An, L.; Cao, M.; Zhang, X.; Lin, J.; Tian, Q.; Yang, S., pH and glutathione synergistically triggered release and self-assembly of Au nanospheres for tumor theranostics. Applied Materials Interfaces 2020, 12 (7), 8050-8061.
    15. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications 1994, (7), 801-802.
    16. Hostetler, M. J.; Templeton, A. C.; Murray, R. W., Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir 1999, 15 (11), 3782-3789.
    17. Kim, Y. J.; Yang, Y. S.; Ha, S.-C.; Cho, S. M.; Kim, Y. S.; Kim, H. Y.; Yang, H.; Kim, Y. T., Mixed-ligand nanoparticles of chlorobenzenemethanethiol and n-octanethiol as chemical sensors. Sensors Actuators B: Chemical 2005, 106 (1), 189-198.
    18. Wohltjen, H.; Snow, A. W., Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor. Analytical Chemistry 1998, 70 (14), 2856-2859.
    19. Grifoni, M.; Hänggi, P., Driven quantum tunneling. Physics Reports 1998, 304 (5-6), 229-354.
    20. Wuelfing, W. P.; Green, S. J.; Pietron, J. J.; Cliffel, D. E.; Murray, R. W., Electronic Conductivity of Solid-State, Mixed-Valent, Monolayer-Protected Au Clusters. Journal of the American Chemical Society 2000, 122 (46), 11465-11472.
    21. Neugebauer, C.; Webb, M., Electrical conduction mechanism in ultrathin, evaporated metal films. Journal of Applied Physics 1962, 33 (1), 74-82.
    22. Cai, Q. Y.; Zellers, E. T., Dual-Chemiresistor GC Detector Employing Monolayer-Protected Metal Nanocluster Interfaces. Analytical Chemistry 2002, 74 (14), 3533-3539.
    23. Jian, R. S.; Huang, R. X.; Lu, C. J., A micro GC detector array based on chemiresistors employing various surface functionalized monolayer-protected gold nanoparticles. Talanta 2012, 88, 160-167.
    24. Zimmermann, J.; Zeug, A.; Röder, B., A generalization of the Jablonski diagram to account for polarization and anisotropy effects in time-resolved experiments. Physical Chemistry Chemical Physics 2003, 5 (14), 2964-2969.
    25. Zhang, S.; Lü, F.; Gao, L.; Ding, L.; Fang, Y., Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics. Langmuir 2007, 23 (3), 1584-1590.
    26. Dansby-Sparks, R. N.; Jin, J.; Mechery, S. J.; Sampathkumaran, U.; Owen, T. W.; Yu, B. D.; Goswami, K.; Hong, K.; Grant, J.; Xue, Z.-L., Fluorescent-dye-doped sol− gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Analytical Chemistry 2010, 82 (2), 593-600.
    27. Gao, M.; Li, S.; Lin, Y.; Geng, Y.; Ling, X.; Wang, L.; Qin, A.; Tang, B. Z., Fluorescent light-up detection of amine vapors based on aggregation-induced emission. ACS Sensors 2016, 1 (2), 179-184.
    28. Buttry, D. A.; Ward, M. D., Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews 1992, 92 (6), 1355-1379.
    29. 李季霖. 奈米金氣體感測材料之線性溶合能量關係模式與圖形辨識之研究. 輔仁大學, 新北市, 2006.
    30. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959, 155 (2), 206-222.
    31. Ding, B.; Kim, J.; Miyazaki, Y.; Shiratori, S., Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors Actuators B: Chemical 2004, 101 (3), 373-380.
    32. Wang, C. C.; Lin, P. Y.; Lu, C. J.; Liu, M. H., Rapid determination of volatile organics using a nanoporous zinc oxide microsphere-coated quartz crystal microbalance. Instrumentation Science & Technology 2017, 45 (6), 639-649.
    33. Lu, H. L.; Lu, C. J.; Tian, W. C.; Sheen, H. J., A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays. Talanta 2015, 131, 467-474.
    34. Jin, X.; Zhang, Y. P.; Li, D. M.; Ma, D.; Zheng, S. R.; Wu, C. H.; Li, J. Y.; Zhang, W. G., The interaction of an amorphous metal–organic cage-based solid (aMOC) with miRNA/DNA and its application on a quartz crystal microbalance (QCM) sensor. Chemical Communications 2020, 56 (4), 591-594.
    35. Li, C. L.; Lu, C. J., Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance. Talanta 2009, 79 (3), 851-855.
    36. Kamat, P. V.; Barazzouk, S.; Hotchandani, S., Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angewandte Chemie International Edition 2002, 41 (15), 2764-2767.
    37. Thomas, K. G.; Kamat, P. V., Chromophore-functionalized gold nanoparticles. Accounts of Chemical Research 2003, 36 (12), 888-898.
    38. Hamamatsu Photonics.
    https://www.hamamatsu.com/resources/pdf/ssd/si_pd_kspd0001e.pdf

    下載圖示
    QR CODE