研究生: |
黃詩涵 Shih-Han Huang |
---|---|
論文名稱: |
第十七型脊髓小腦共濟失調症(SCA17)細胞模式的新穎化合物篩檢及氧化壓力研究 Screening of Novel Compounds and Oxidative Stress Studies using SCA17 Cell Model |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 第十七型脊髓小腦運動失調症 、polyQ蛋白 、氧化壓力 |
英文關鍵詞: | SCA17, polyglutamine (polyQ), oxidative stress |
論文種類: | 學術論文 |
相關次數: | 點閱:79 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第十七型脊髓小腦運動失調症(spinocerebellar ataxias 17,簡稱SCA17)是起因於TATA-box binding protein (TBP)基因上的CAG三核苷重複序列重複擴增,導致轉譯出異常的polyQ蛋白。在正常人族群中polyQ蛋白重複的數目約25到42之間,而SCA17疾病的患者polyQ蛋白重複數目擴增至43到66之間。polyQ蛋白擴增會造成多胜肽的構型改變,促使蛋白質錯誤摺疊和聚集(aggregation),並進ㄧ步形成不溶性的蛋白包涵體(inclusion)。隨著對疾病致病機轉的瞭解增加,也使疾病治療的發展有很大的進展。本論文即建立表現EGFP標記、polyQ擴增的TBP N端蛋白的293細胞,處理合成的indole、quinoxaline化合物(由化學系姚清發和陳焜銘老師所提供),藉計算包含聚集物的細胞的比例,及不溶性TBP-EGFP融合蛋白定量,來檢測化合物對抑制polyQ蛋白聚集的效果。結果顯示338化合物降低融合蛋白聚集的程度比SAHA略好(64.3% vs. 66.1%;70.7% vs. 77.4%)。而且338的IC50 (396 μM)遠高於SAHA (31.4 μM),可能作為未來發展治療SCA17疾病的參考藥物。此外,由於擴增的polyQ蛋白會造成氧化壓力,增加粒線體功能損傷,本研究亦利用年齡與性別配對的淋巴細胞株,來檢測氧化壓力在SCA17疾病上扮演的角色,結果發現SCA17病人細胞較正常人細胞對氧化壓力的耐受性差。
關鍵字:第十七型脊髓小腦運動失調症、polyQ蛋白、氧化壓力
Spinocerebellar ataxias 17 (SCA17) has been attributed to CAG repeat expansions in human TATA-box binding protein (TBP) gene. The CAG repeats code for polyglutamine (polyQ) tract. The polyQ tract contains 25~42 polyQ in normal population while expanded 43~66 polyQ is linked to SCA17. The polyQ expansions cause a conformational change in the polypeptide to promote misfolding and aggregation of the disease protein, which ultimately forms insoluble protein inclusions. Accompanying increasing insights into the pathophysiology of repeat expansion, much progress has been made to develop therapeutics. In this study, the 293 cells expressing EGFP-tagged polyQ-expanded N-terminal TBP were established and treated with the synthesized indole and quinoxaline compounds (provided by Drs Ching-Fa Yao and Kwunmin Chen). The effects of compounds on inhibiting polyQ aggregation were examined by counting aggregates numbers and quantifying insoluble nTBP-EGFP levels on EGFP-positive cells. The results illustrate that compounds 338 reduce aggregation to a level slightly better than that of SAHA (64.3% vs. 66.1%;70.7% vs. 77.4%). Among them, the IC50 of compound 338 (396 μM) is much higher than that of SAHA (31.4 μM), indicating that 338 may be a lead compound for SCA17 therapeutic development. As the polyQ expansions can induce reactive oxygen species (ROS) to lead to mitochondria impairment, age- and gender-matched lymphoblastoid cells were used to examine the roles of oxidative stress in SCA17 pathogenesis. The results demonstrate oxidative vulnerability of cells carrying expanded TBP.
Key words: SCA 17, polyglutamine (polyQ), oxidative stress
李麗卿(2009)。第十七型脊髓小腦共濟失調症致病機轉:伴隨蛋白的保護功能與TATA結合蛋白CAG三核苷重複擴增造成不正常蛋白質折疊之研究。國立台灣師範大學生命科學系九十七學年度博士論文。
黃慧茹(2007)。第十七型脊髓小腦運動失調症:遺傳檢測即發展生化暨酵母菌的藥物篩檢模式。國立台灣師範大學生命科學系九十五學年度碩士論文。
Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133-154.
Alonso I, Costa C, Gomes A, Ferro A, Seixas AI, Silva S, Cruz VT, Coutinho P, Sequeiros J, Silveira I (2005) A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14. J Hum Genet 50:523-529.
Andreassen OA, Ferrante RJ, Dedeoglu A, Beal MF (2003) Lipoic acid improves survival in transgenic mouse models of Huntington's disease. Neuroreport 12:3371-3373.
Aronchik I, Bjeldanes LF, Firestone GL (2010) Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res 12:4961-4971.
Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of huntington's disease. J Neurochem 79:1246-1249.
Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in huntington's disease: Selective vulnerability of the basal ganglia. Ann Neurol 41:646-653.
Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in huntington's disease. Brain Pathol 9:147-163.
Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC (2006) Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 21:396-401.
Burley SK, Roeder RG (1996) Biochemistry and structural biology of transcription factor IID (TFIID). Annu Rev Biochem 65:769-799.
Chen CM, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel J-, Cha J-J, Friedlander RM (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delay mortality in a transgenic mouse model of huntington disease. Nat Med 6:797-801.
Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, Hou YT, Lin CY, Huang SY, Chen IC, Soong BW, Li ML, Hsieh-Li HM, Su MT, Lee-Chen GJ (2005) Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res 78:131-136.
Chou AH, Yeh TH, Kuo YL (2006) Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol Dis 21:333-345.
Cooper JK, Schilling G, Peters MF, Herring WJ, Sharp AH, Kaminsky Z, Masone J, Khan FA, Delanoy M, Borchelt DR, Dawson VL, Dawson TM, Ross CA (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 7:783-790.
Cordeiro Y, Lima LM, Gomes MP, Foguel D, Silva JL (2004) Modulation of prion protein oligomerization, aggregation, and beta-sheet conversion by 4,4'-dinaphthyl-5,5'-sulfonate (bis-ANS). J Biol Chem 279:5346-5352.
David G, Abbas N, Stevanin G, Duerr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Brice A (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65-70.
Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJL, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of huntington's disease. J Neurosci 22:8942-8950.
Dedeoglu A, Kubilus JK, Yang L, Ferrante KL, Hersch SM, Beal MF, Ferrante RJ (2003) Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington's disease transgenic mice. J Neurochem 85:1359-1367.
DiFiglia M, Sapp E, Chase KO (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993.
Duenas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357-1370.
Ferrante RJ, Andreassen OA, Jenkins BG, Dedeoglu A, Kuemmerle S, Kubilus JK, Kaddurah-Daouk R, Hersch SM, Beal MF (2000) Neuroprotective effects of creatine in a transgenic mice model of Huntington's disease. Neurosci 20:4389-4397.
Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in huntington's disease mice. J Neurosci 23:9418-9427.
Filla A, De Michele G, Cocozza S, Patrignani A, Volpe G, Castaldo I, Ruggiero G, Bonavita V, Masters C, Casari G, Bruni A (2002) Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy. Neurology 58:922-928.
Flis S, Spłwiński J (2009) Inhibitory effects of 5-fluorouracil and oxaliplatin on human colorectal cancer cell survival are synergistically enhanced by sulindac sulfide. Anticancer Res 29:435-441.
Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Dürr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain 124:1939-1947.
Gold BG, Voda J, Yu X, Gordon H (2004) The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Exp Neurol 187:160-170.
Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342:184-190.
Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C (2004) Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord 19:217-220.
Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PAS, Steffan JS, Marsh JL, Thompson LM, Lewis CM, Marks PA, Bates GP (2003) Suberoylanilide hydroxamic acid, a histon deacetylase inhibitor, ameliorates motor deficits in a mouse model of huntington's disease. Proc Natl Acad Sci USA 100:2041-2046.
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL (1999) Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 23:391-392.
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A, Rothstein JD, Schut LJ, Day JW, Ranum LP (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184-190.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Durr A, Didierjean O, Stevanin G, Agid Y, Brice A (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285-291.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Kakizuka A (1994) CAG expansions in a novel gene for machado-joseph disease at chromosome 14q32.1. Nat Genet 8:221-228.
King MA, Hands S, Hafiz F, Mizushima NM, Tolkovesky AM, Wyttenbach A (2008) Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol Pharmacol 73:1052-1063.
Klivenyi P, Ferrante RJ, Gardian G, Browne S, Chabrier PE, Beal MF (2003) Increased survival and neuroprotective effects of BN82541 in a transgenic mice model of Huntington's disease. Neurochem 86:267-272.
Knuckey NW, Palm D, Primiano M, Epstein MH, Johanson CE (1995) N-acetylcysteine enhances hippocampal neuronal survival after transient forebrain ischemia in rats. Stroke 26:305-310; discussion 311.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9-13.
Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: A new polyglutamine disease? Hum Mol Genet 8:2047-2053.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379-384.
Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuehlke C, Nitschke M-, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341-2352.
Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K (2007) The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord 13:246-249.
Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, Bruni A, Cocozza S, Casari G, Servadio A, De Michele G (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441-1443.
Manto M (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
Marx J (2005) Neurodegeneration. Huntington's research points to possible new therapies. Science 310:43-45.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191-194.
Mitsui K, Nakayama H, Akagi T, Nekooki M, Ohtawa K, Takio K, Hashikawa T, Nukina N (2002) Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 22:9267-9277.
Nakamura K, Jeong S, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
Ng H, Pulst SM, Huynh DP (2007) Ataxin-2 mediated cell death is dependent on domains downstream of the polyQ repeat. Exp Neurol 208:207-215.
Ona VO, Li M, Vonsattel JPG, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li X, Stieg PE, Yuan J, Penney JB, Young AB, Cha JJ, Friedlander RM (1999) Inhibition of caspase-1 slows disease progression in a mouse model of huntington's disease. Nature 399:263-267.
Orr HT, Chung M, Banfi S, Kwiatkowski TJ,Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LPW, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221-226.
Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457-1470.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen X, Lopes-Cendes I, Pearlman S, Starkman S, Orozoco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Sahba S (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269-276.
Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107-1117.
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585-595.
Reid SJ, Rees MI, van Roon-Mom WMC, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RLM, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: A SCA17 cellular model and population study. Neurobiol Dis 13:37-45.
Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, Schöls L, Riess O (2003) Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 54:367-375.
Sa´nchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373-379.
Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B, Santiago- López D, Villeda-Hernández J, Galván-Arzate S, Jiménez- Capdeville ME, Ali SF (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. Neurochem 86:479-488.
Schilling G, Coonfield ML, Ross CA, Borchelt DR (2001) Coenzyme Q10 and reacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mice model. Neurosci Lett 315:149-153.
Schmidt T, Lindenberg KS, Krebs A, Schöls L, Laccone F, Herms J, Rechsteiner M, Riess O, Landwehrmeyer GB (2002) Protein surveillance machinery in brains with spinocerebellar ataxia type 3: Redistribution and differential recruitment of 26S proteasome subunits and chaperones to neuronal intranuclear inclusions. Ann Neurol 51:302-310.
Seipel K, Georgiev O, Gerber H, Schaffner W (1994) Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: Is the repetitive C-terminal domain (CTD) of RAN polymerase II a ''portable enhancer domain''? Mol Reprod Dev 39:215-225.
Silveira I, Miranda C, Guimarães L, Moreira M-, Alonso I, Mendonça P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januário C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J (2002) Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 59:623-629.
Sittler A, Lurz R, Lueder G, Priller J, Hayer-Hartl MK, Hartl FU, Lehrach H, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of huntington's disease. Hum Mol Genet 10:1307-1315.
Smith DL, Portier R, Woodman B, Hockly E, Mahal A, Klunk WE, Li XJ, Wanker E, Murray KD, Bates GP (2001) Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose-response profiles. Neurobiol Dis 8:1017-1026.
Steffan JS, Bodai L, Pallos J, Poelman M, McCampbell A, Apostol BL, Kazantsev A, Schmidt E, Zhu Y, Greenwald M, Kurokawa R, Housman DE, Jackson GR, Marsh JL, Thompson LM (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739-743.
Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, Welter ML, Ollagnon-Roman E, Lemainque A, Ruberg M, Brice A, Durr A (2004) Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol 61:1242-1248.
Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine- mediated pathology in a mouse model of Huntington's disease. Nat Med 10:148-145.
Tanaka M, Machida Y, Nukina N (2005) A novel strategy for polyglutamine disease by stabilizing aggregation-prone proteins with small molecules. Mol Med 83:343-352.
Teive HA (2009) Spinocerebellar ataxias. Arq Neuropsiquiatr 67:1133-1142.
Thomas EA, Coppola G, Desplats PA, Tang B, Soragni E, Burnett R, Gao F, Fitzgerald KM, Borok JF, Herman D, Geschwind DH, Gottesfeld JM (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc Natl Acad Sci USA 105:15564-15569.
Trushina E, McMurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233-1248.
Ty N, Dupeyre G, Chabot GG, Seguin J, Quentin L, Chiaroni A, Tillequin F, Scherman D, Michel S, Cachet X (2010) Structure-activity relationships of indole compounds derived from combretastatin A4: synthesis and biological screening of 5-phenylpyrrolo[3,4-a] carbazole-1,3-diones as potential antivascular agents. Eur J Med Chem 45:3726-3739.
van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, Kremer HP, Sinke RJ (2003) Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology 61:1760-1765.
Wang HL, Yeh TH, Chou AH (2006) Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-x(L). Cell Signal 18:541-552.
Wen F, Li Y, Tsai H, Lin C, Li C, Liu C, Lii C, Nukina N, Hsieh M (2003) Down-regulation of heat shock protein 27 in neuronal cells and non-neuronal cells expressing mutant ataxin-3. FEBS Lett 546:307-314.
Weng Q, Zhang J, Cao J, Xia Q, Wang D, Hu Y, Sheng R, Wu H, Zhu D, Zhu H, He Q, Yang B. (2010) Q39, a quinoxaline 1,4-Di-N-oxide derivative, inhibits hypoxia-inducible factor-1alpha expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Invest New Drugs [Epub ahead of print].
Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, Messer A (2005) Suppression of Huntington’s disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci USA 102:11563-11568.
Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang JC, Li SH, Hwang JC, Fang K, Hsieh-Li HM, Li ML, Tung LC, Su MT, Lu KT, Lee-Chen GJ (2004) Genetic testing in spinocerebellar ataxia in Taiwan: expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson's disease. Clin Genet 65:209-214.
Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, Hsieh-Li HM, Lin HY, Lin CY, Li SN, Chen CM (2005) Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm 112:539-546.
Wullner U (2003) Genes implicated in the pathogenesis of spinocerebellar ataxias. Drugs Today 39:927-937.
Wyttenbach A, Swartz J, Kita H, Thykjaer T, Carmichael J, Bradley J, Brown R, Maxwell M, Schapira A, Orntoft TF, Kato K, Rubinsztein DC (2001) Polyglutamine expansions cause decreased CRE-mediated transcription and early gene expression changes prior to cell death in an inducible cell model of Huntington's disease. Hum Mol Genet 10:1829-1845.
Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo A, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137-1151.
Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, Tsuji S, Kikuchi S, Tashiro K (2003) Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 60:1749-1751.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62-69.
Zühlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9:160-164.