簡易檢索 / 詳目顯示

研究生: 謝孟錡
HSIEH, Meng-Chi
論文名稱: 以多尺度計算化學方法理解孔洞材料:以基於MOF-253的催化劑為例
Multi-scale computational chemistry approach for understanding the porous materials: The MOF-253-based catalyst example
指導教授: 蔡明剛
Tsai, Ming-Kang
口試委員: 蔡明剛
Tsai, Ming-Kang
王迪彥
Wang, Di-Yan
林嘉和
Lin, Chia-Her
葉丞豪
Yeh, Chen-Hao
張鈞智
Chang, Chun-Chih
口試日期: 2024/07/23
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 210
中文關鍵詞: 計算化學金屬有機骨架材料多尺度催化二氧化碳還原反應
英文關鍵詞: Computational chemistry, Metal-organic frameworks, Multiscale, Catalysis, CO2 reduction reaction
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401146
論文種類: 學術論文
相關次數: 點閱:254下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於大氣中二氧化碳濃度提升,造成全球性的環境變遷,並影響生物生存,目前科學界對於解決此問題具有急迫性。金屬有機骨架作為孔洞性材料,具有好的儲存氣體的能力。 MOF-253 經證實對於二氧化碳有很好的吸附能力。本論文旨在通過應用多尺度模擬來加速設計、篩選後修飾合成後的 MOF-253,作為催化中心。目的有四:設計空間尺度由下到上的篩選策略、設計時間尺度由上到下的篩選策略、設計適用於金屬有機骨架材料的模型、推測在此類材料上的反應路徑。
    第一章詳細敘述本研究的研究背景、動機與架構。第二章說明實驗方法以及用於模擬實驗的理論。第三章說明空間尺度由下到上的篩選模式的實驗設計與研究結果。第四章說明時間尺度由上到下的篩選模式的實驗設計與研究結果。第五章總結本研究的成果並說明未來的展望。
    透過本研究,提出了三個可行的單金屬反應中心作為活化的催化劑,並且提出了另一種可能的金屬雙體反應中心形式可以做為催化中心。同時,也說明了對應這些催化中心的反應機制。此外,也提出了在金屬有機骨架材料中,連接體旋轉的影響因素與帶來的影響。期許本研究能對於孔洞材料的相關研究發展有所助益。

    Due to the increasing concentration of carbon dioxide in the atmosphere, global environmental changes have been induced, affecting the survival of organisms. The scientific community currently faces an urgent need to address this issue. Metal-organic frameworks (MOFs) are porous materials with excellent gas storage capabilities. MOF-253 has been proven to have a strong adsorption capacity for carbon dioxide. This dissertation aims to accelerate the design, and screening of post-synthetic modification of MOF-253 as a catalytic center by applying multiscale simulations. Here are 4 objectives: to design a bottom-up spatial-scale screening strategy, to design a top-down time-scale screening strategy, to design a model suitable for MOFs, and to predict reaction pathways on such materials.
    Chapter 1 provides a detailed description of the research background, motivation, and framework. Chapter 2 explains the experimental methods and the theories used for simulations. Chapter 3 describes the bottom-up spatial-scale screening strategy's experimental design and research results. Chapter 4 explains the top-down time-scale screening strategy's experimental design and research results. Chapter 5 summarizes the research findings and discusses prospects.
    Through this research, three feasible single-metal reaction centers were proposed as activation catalysts, and another possible form of dual-metal reaction center was suggested as a catalytic center. Additionally, the corresponding reaction mechanisms for these catalytic centers were elucidated.
    Furthermore, the factors influencing the rotation of linkers in metal-organic framework materials and the effects brought by such rotations were also discussed. It is hoped that this research will contribute to the development of related studies on porous materials.

    口試委員會審定書 # 謝誌 i 中文摘要 ii ABSTRACT iii 目次 v 表次 x 圖次 xii 第 1 章 緒論 1 § 1-1 研究背景與動機 1 §1-1-1 多尺度的科學 1 §1-1-2 計算化學 3 1.1.2.1 古典力學的計算化學 8 1.1.2.2 量子力學的計算化學 9 §1-1-3 多尺度的計算化學與工程 11 § 1-2 研究架構 16 §1-2-1 反應選擇與計算 16 1.2.1.1 環境議題與碳中和 16 1.2.1.2 二氧化碳還原反應 19 §1-2-2 材料選擇與建模 21 1.2.2.1 異相催化 21 1.2.2.2 金屬有機框架材料材料 24 1.2.2.3 MOF-253 30 §1-2-3 研究目的 33 § 1-3 結語 34 第 2 章 計算原理 36 § 2-1 量子力學的計算原理 36 §2-1-1 可計算的量子力學 36 2.1.1.1 波恩–歐本海默近似 36 2.1.1.2 獨立電子近似 39 2.1.1.3 哈特里自洽場 40 2.1.1.4 斯雷特行列式與哈特里–佛克方法 41 2.1.1.5 分子軌域與基組 46 2.1.1.6 微擾近似 50 2.1.1.7 哈特里–佛克方法的相關方法 51 §2-1-2 密度泛函理論 58 2.1.2.1 奧昂貝格–柯恩定理 58 2.1.2.2 柯恩–沈方法與局部密度近似 59 2.1.2.3 純泛函與混成泛函 61 2.1.2.4 長距離效應與分散力修正 64 2.1.2.5 贗勢 68 2.1.2.6 固態材料的計算 69 §2-1-3 本研究中的量子力學計算 75 § 2-2 古典力學的計算原理 76 §2-2-1 古典力學的參數 76 2.2.1.1 鍵結勢能 76 2.2.1.2 非鍵結勢能 79 §2-2-2 UFF 80 § 2-3 計算實務 83 §2-3-1 性質的計算 83 2.3.1.1 勢能面與單點能計算 83 2.3.1.2 結構最適化與過渡態探索 84 2.3.1.3 振動光譜計算 87 2.3.1.4 電荷分析 88 2.3.1.5 分子動力學 90 2.3.1.6 粉末X射線繞射模擬 91 §2-3-2 軟體及系統 91 2.3.2.1 Gaussian 16 及 Gaussview 6 91 2.3.2.2 The Vienna Ab initio Simulation Package 92 2.3.2.3 The Amsterdam Modeling Suite 93 2.3.2.4 VESTA 94 2.3.2.5 Python 3.7 94 §2-3-3 硬體 95 2.3.3.1 國立臺灣師範大學理學院雲端運算平臺 95 2.3.3.2 台灣杉一號 95 第 3 章 空間尺度由下到上的篩選模式 97 § 3-1 前言 97 § 3-2 計算方法與參數 100 § 3-3 結果與討論 102 §3-3-1 週期性尺度模型的金屬配位測試 102 §3-3-2 分子模型的二氧化碳還原反應篩選 108 3.3.2.1 預期的反應路徑 109 3.3.2.2 以六配位中心進行二氧化碳活化 112 3.3.2.3 以五配位中心進行二氧化碳活化 115 3.3.2.4 以四配位中心進行二氧化碳活化 119 §3-3-3 週期性尺度模型的二氧化碳還原反應驗證 126 §3-3-4 氯原子轉移的潛在方式 129 §3-3-5 在其他金屬骨架材料的模擬—以 MOF-867 為例 133 § 3-4 結論 137 第 4 章 時間尺度由上到下的篩選模式 139 § 4-1 前言 139 § 4-2 計算方法與參數 144 § 4-3 結果與討論 147 §4-3-1 MOF-253 連結體的動力學現象 147 §4-3-2 客體分子吸附於 MOF-253 的動力學現象 154 §4-3-3 MOF-253 連接體旋轉與粉末 X 射線繞射模擬 162 §4-3-4 對螯合金屬錯合物雙體的 MOF-253反應路徑猜想 166 § 4-4 結論 169 第 5 章 結語與展望 172 參考文獻 174

    1. Bell, D. S. The Promise of Metal–Organic Frameworks for Use in Liquid Chromatography. LCGC North. Am., 2018, 36, 352-354.
    2. Ming, Y.; Chi, H.; Blaser, R.; Xu, C.; Yang, J.; Veenstra, M.; Gaab, M.; Müller, U.; Uher, C.; Siegel, D. J. Anisotropic thermal transport in MOF-5 composites. Int. J. Heat Mass Transf. 2015, 82, 250-258.
    3. Kapil, V.; Wieme, J.; Vandenbrande, S.; Lamaire, A.; Speybroeck, V. V.; Ceriotti, M. Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations. J. Chem. Theory Comput. 2019, 15, 3237-3249.
    4. Gray, J.; Szalay, A. eScience—A Transformed Scientific Method. Presented at Computer Science and Technology Board of the National Research Council, California, United State, January 11, 2007.
    5. The Fourth Paradigm: Data-Intensive Scientific Discovery. Hey, T.; Tansley, S.; Tolle, K., Eds.; Microsoft Research, 2009.
    6. Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Casta, M.; Fazzio, A. From DFT to machine learning: recent approaches to materials science–a review. Jphys. Mater. 2019, 2, 032001.
    7. Li, Z.; Yoon, J.; Zhang, R.; Rajabipour, F.; Srubar III, W. V.; Dabo, I.; Radlińska, A.; Machine learning in concrete science: applications, challenges, and best practices. Npj Comput. Mater. 2022, 8, 127.
    8. Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, 1998.
    9. Mulyati, T. A.; Ediati, R.; Rosyidah, A. Influence of solvothermal temperatures and times on crystallinity and morphology of MOF-5. Indones. J. Chem. 2015, 15, 101-107.
    10. Allinger, N. L. Calculation of Molecular Structure and Energy by Force-Field Methods. Adv. Phys. Org. Chem. 1976, 13, 1-82.
    11. Pearce, J. Frank Westheimer, 95, Who Developed Model Valuable in Biochemistry, Dies. The New York Times. April 21, 2007.
    https://www.nytimes.com/2007/04/21/obituaries/21westheimer.html (accessed 2023-11-07).
    12. Westheimer, F. H.; Mayer, J. E. The Theory of the Racemization of Optically Active Derivatives of Diphenyl. J. Chem. Phys. 1946, 14, 733-738.
    13. Fianchin, M. Synthesis meets theory: Past, present and future of rational chemistry. Phys. Sci. Rev. 2017, 2, 134.
    14. Borges, R. M.; Colby, S. M.; Das, S.; Edison, A. S.; Fiehn, O.; Kind, T.; Lee, J.; Merrill, A. T.; Merz Jr, K. M.; Metz, T. O.; Nunez, J. R.; Tantillo, D. J.; Wang, L.-P.; Wang, S.; Renslow, R. S. Quantum Chemistry Calculations for Metabolomics. Chem. Rev. 2021, 121, 5633-5670.
    15. Grimme, S.; Schreiner, P. R. Computational Chemistry: The Fate of Current Methods and Future Challenges. Angew. Chem. Int. Ed. 2018, 57, 4170-4176.
    16. Ingram, G. D.; Cameron, I. T.; Hangos, K. M. Classification and analysis of integrating frameworks in multiscale modelling. Chem. Eng. Sci. 2004, 59, 2171-2187.
    17. Ingram, G. D.; Cameron, I. T. Challenges in Multiscale Modelling and its Application to Granulation Systems. Dev. chem. eng. miner. 2004, 2, 293-308.
    18. Bruix, A.; Margraf, J. T.; Anderson, M.; Reuter, K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat. Catal. 2019, 2, 659-670.
    19. Chan, Y.-T.; Tsai, M.-K. CO2 reduction catalysis by tunable square-planar transition-metal complexes: a theoretical investigation using nitrogen-substituted carbon nanotube models. Phys. Chem. Chem. Phys. 2017, 19, 29068-29076.
    20. Chang, C.-C.; Li, E. Y.; Tsai, M.-K. A computational exploration of CO2 reduction via CO dimerization on mixed-valence copper oxide surface. Phys. Chem. Chem. Phys. 2018, 20, 16906-16909.
    21. Yu, H.; Zhang, H. Impact of ambient air pollution on physical activity and sedentary behavior in children. BMC Public Health 2023, 23, 357.
    22. Oxford Word of the Year. https://languages.oup.com/word-of-the-year/ (accessed 2023-11-14).
    23. Huovila, A.; Siikavirta, H.; Rozado, C. A.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912.
    24. Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P.-S. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 2022, 20, 2277-2310.
    25. Deng, H.; Bielicki, J. M.; Oppenheimer, M.; Fitts, J. P.; Peters, C. A. Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation. Clim. Change 2017, 144, 151-163.
    26. Sumida, K; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, Jeffrey R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 2, 724-781
    27. Gheytanzadeh, M.; Baghban, A.; Habibzadeh, S.; Esmaeili, A.; Abida, O.; Mohaddespour, A.; Tajammal Munir, M. Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach. Sci. Rep. 2021, 11, 15710.
    28. Hou, R.; Fong,C.; Freeman, B. D.; Hill, M. R.; Xie, Z. Current status and advances in membrane technology for carbon capture. Sep. Purif. Technol. 2022, 300, 121863.
    29. Ramdin, M.; de Loos, T. W.; Vlugt, T. J.H. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51, 8149-8177.
    30. Jones, C. W. Recent Developments in CO2 Capture and Conversion. JACS Au 2023, 3, 1536-1538.
    31. Adamu, A.; Russo-Abegão, F.; Boodhoo, K. Process intensification technologies for CO2 capture and conversion – a review. BMC Chem. Eng. 2020, 2, 2
    32. Jeyachandran, N.; Yuan, W.; Giordano, C. Cutting-Edge Electrocatalysts for CO2RR. Molecules, 2023, 28, 3504.
    33. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chen, K.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F.; Chorkendorff, I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610-7672.
    34. Garg, S.; Li, M.; Weber, A. Z.; Ge, L.; Li, L.; Rudolph, V.; Wang, G.; Rufford, T. E. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J. Mater. Chem. A 2020, 8, 1511-1544.
    35. Huang, J.; Wang, Z.; Qiao, Y.; Wang, B.; Yu, Y.; Xu, M. Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition. Proc. Combust. Inst. 2021, 38, 4335-4344.
    36. Li, Z.; Han, B.; Bai, W.; Wei, G.; Li, X.; Qi, J.; Liu, D.; Zheng, Y,; Zhu, L. Photocatalytic CO2RR for gas fuel production: Opportunities and challenges. Sep. Purif. Technol. 2023, 324, 124528.
    37. Kan, M.; Wang, Q.; Hao, S.; Guan, A.; Chen, Y.; Zhang, Q.; Han, Q.; Zheng, G. System Engineering Enhances Photoelectrochemical CO2 Reduction. J. Phys. Chem. C 2022, 126, 1689-1700.
    38. Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catal. 2020, 10, 14984-15007.
    39. Niu, K.; Xu, Y.; Wang, H.; Ye, R.; Xin, H.; Lin. F.; Tian, C.; Lum, Y.; Bustillo, K. C.; Doeff, M. M.; Koper, M. T. M.; Ager, J.; Xu, R.; Zheng, H. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci. Adv. 2017, 3, 170092.
    40. Goyal, A.; Marcandalli, G.; Mints, V. A.; Koper, T. M. Competition between CO2 Reduction and Hydrogen Evolution on a Gold Electrode under Well-Defined Mass Transport Conditions. J. Am. Chem. Soc. 2020, 142, 4154-4161.
    41. Löffelholz, M.; Osiewacs, J.; Lüken, A.; Perrey, K.; Bulan, A.; Turek, T. Modeling electrochemical CO2 reduction at silver gas diffusion electrodes using a TFFA approach. J. Chem. Eng. 2022, 435, 134920.
    42. Lai, W.; Qiao, Y.; Wang, Y.; Huang, H. Stability Issues in Electrochemical CO2 Reduction: Recent Advances in Fundamental Understanding and Design Strategies. Adv. Mater. 2023, 2306288.
    43. Bai, S.-T.; De Smet, G.; Liao, Y.; Sun, R.; Zhou, C.; Beller, M.; Maes, B. U. W.; Sels, B. F. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 2021, 50, 4259-4298.
    44. Mandal, S.; Ghosh, D.; Kumar, P. Recent advancement in heterogeneous CO2 reduction processes in aqueous electrolyte. J. Mater. Chem. A 2022, 10, 20667-20706.
    45. Abdinejad, M.; Nur Hossain, M.; Kraatz, H.-B. Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Adv. 2020, 10, 38013-38023.
    46. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Hem, Z. R.; Bae, T.-H.; Long, J. R. Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112, 724-781.
    47. Salehi-Khojin, A.; Jhong, H.-R. M.; Rosen, B. A.; Zhu, W.; Ma, S.; Kenis, P. J. A.; Masel, R. I. Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis. J. Phys. Chem. C 2013, 117, 1627-1632.
    48. Yang, Xiao-Feng; Wang, Aiqin; Qiao, Botao; Li, Jun; Liu, Jingyue; Zhang, Tao. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013, 46, 1740-1748.
    49. Boyes, E. B.; LaGrow, A. P.; Ward, M. R.; Mitchell, R. W.; Gai, P. L. Single Atom Dynamics in Chemical Reactions. Acc. Chem. Res. 2020, 53, 390-399.
    50. Qiu, C.; Odarchenko, Y.; Lezcano-Gonzalez, I.; Meng, Q.; Slater, T.; Xu, S.; Beale, A. Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues. J. Catal. 2023, 419, 58-67.
    51. Babakhani, P. The impact of nanoparticle aggregation on their size exclusion during transport in porous media: One- and three-dimensional modelling investigations. Sci. Rep. 2019, 9, 14071.
    52. Hitrik, M.; Sasson, Y. Aggregation of catalytically active Ru nanoparticles to inactive bulk, monitored in situ during an allylic isomerization reaction. Influence of solvent, surfactant and stirring. RSC Adv. 2018, 8, 1481-1492.
    53. Zhang, H.; Kawashima, K.; Okumaru, M.; Toshima, N. Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J. Mater. Chem. A 2014, 2, 13498-13508
    54. Zhang, Z.; Chen, Y.; Zhou, L.; Chen, C.; Zhang, B.; Wu, Q.; Yang, L.; Du, L.; Bu, Y.; Wng, P.; Wang, X.; Yang, H.; Hu, Z. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.
    55. Toshima, N.; Shiraishi, Y.; Teranishi, T.; Miyake, M.; Tominaga, T.; Watanabe, H.; Brijoux, W.; Bönnemann, H.; Schmid, G. Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organometal. Chem. 2001, 15, 178-196.
    56. Govan, J.; Gun’ko, Y. K. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts. Nanomaterials 2014, 4, 222-241.
    57. Ren, S.; Lees, E. W.; Hunt, C.; Jewlal, A.; Kim, Y.; Zhang, Z.; Mowbray, B. A. W.; Fink, A. G.; Melo, L; Grant, E. R.; Berlinguette, C. P. Catalyst Aggregation Matters for Immobilized Molecular CO2RR Electrocatalysts. J. Am. Chem. Soc. 2023, 145, 4414-4420.
    58. Zhang, S.; Fan, Q.; Xia, E.; Meyers, M. J. CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Acc. Chem. Res. 2020, 53, 255-264.
    59. Ozden, S.; Delafontaine, L.; Asset, T.; Guo, S.; Filsinger, K. A; Priestley, R. D.; Atanassov, P.; Arnold, C. B. Graphene-based catalyst for CO2 reduction: The critical role of solvents in materials design. J. Catal. 2021, 404, 512-517.
    60. Liu, S.; Cheng, L.; Li, K.; Yin, C.; Tang, H.; Wang, Y.; Wu, Z. RuN4 Doped Graphene Oxide, a Highly Efficient Bifunctional Catalyst for Oxygen Reduction and CO2 Reduction from Computational Study. ACS Sustain. Chem. Eng. 2019, 7, 8136-8144.
    61. Chi, C.; Duan, D.; Zhang, z.; Wei, G.; Li, Y.; Liu, S. Mo–Bi Bimetallic Chalcogenide Nanoparticles Supported on CNTs for the Efficient Electrochemical Reduction of CO2 to Methanol. Coatings 2020, 10, 1142.
    62. Hung, S.-F.; Xu, A.; Wang, X.; Li, F.; Hsu, S.-H.; Li, Y.; W, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; Luo, M.; Nam, D.-H.; Wang, N.; Peng, T.; Yan, Y.; Lee, G.; Sargent, E. H. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 2022, 13, 819.
    63. Lang, R.; Du, X.; Huang, Y.; Jiang, X.; Zhang, Q.; Guo, Y.; Liu, K.; Qiao, B.; Wang, A.; Zhang, T. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020, 120, 11986-12043.
    64. Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717-12723.
    65. Lu, W.; Wei, Z.; Gu, Z. Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q.; Gentle III, T.; Bosch, M.; Zhou, H.-C. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.
    66. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 2022, 7, 44507-44531.
    67. Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401-10402.
    68. Jodłowski, P. J.; Kurowski, G.; Dymek, K.; Oszajca, M.; Pisloez, W.; Hyjek, K.; Wach, A.; Pajdak, A.; Mazur, M.; Rainer, D. N.; Wierzbicki, D.; Jeleń, P.; Sitarz, M. From crystal phase mixture to pure metal-organic frameworks – Tuning pore and structure properties. Ultrason. Sonochem. 2023, 95, 106377.
    69. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-Organic Framework as a Template for Porous Carbon Synthesis. J. Am. Chem. Soc. 2008, 130, 5390-5391.
    70. Zhang, M.; Luo, R.; Wang, C.; Zhang, W.; Yan, X.; Sun, X.; Wang, L.; Li, L. Confined pyrolysis of metal–organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes. J. Mater. Chem. A 2019, 7, 12547-12555.
    71. Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438-1511.
    72. Johnson, E. M.; Ilic, S.; Morris, A. J. Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Cent. Sci. 2021, 7, 445-453.
    73. Xie, L. S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536-8580.
    74. McGuire, C. V.; Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 2015, 51, 5199-5217.
    75. Choi, J. S.; Bae, J.; Lee, U. J.; Jeong, N. C. A Chemical Role for Trichloromethane: Room-Temperature Removal of Coordinated Solvents from Open Metal Sites in the Copper-Based Metal–Organic Frameworks. Inorg. Chem. 2018, 57, 5225-5231.
    76. Kim, H. K.; Yun, W. S.; Kim, M.-B.; Kim, J. Y.; Bae, Y.-S.; Lee, J.; Jeong, N. C. A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-10015.
    77. Bentley, J.; Foo, G. S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D. S.; Nair, S. Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/ Paraffin Selectivity in the Metal–Organic Framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043-5053.
    78. Yoon, J. W.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Grenèche, J.-M.; Rodrigues, A. E.; Férey, G. Controlled Reducibility of a Metal−Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angew. Chem., Int. Ed. 2010, 49, 5949-5952.
    79. Vermoortele, F.; Ameloot, R.; Alaerts, L.; Matthessen, R.; Carlier, B.; Fernandez, E. V. R.; Gascon, J.; Kapteijn, F.; De Vos, D. E. Tuning the Catalytic Performance of Metal−Organic Frameworks in Fine Chemistry by Active Site Engineering. J. Mater. Chem. 2012, 22, 10313-10321.
    80. Li, Z.; Peters, A. W.; Bernales, V.; Ortuño, M. A.; Schweitzer, N. M.; DeStefano, M. R.; Gallington, L. C.; Platero-Prats, A. E.; Chapman, K. W.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS Cent. Sci. 2017, 3, 31-38.
    81. Li, Z.; Peters, A. W., Liu, J.; Zhang, X.; Schweitzer, N. M.; Hupp, J. T.; Farha, O. K. Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation. Inorg. Chem. Front. 2017, 4, 820-824.
    82. Brozek, C. K.; Dincă, M. Lattice-imposed geometry in metal–organic frameworks: lacunary Zn4O clusters in MOF-5 serve as tripodal chelating ligands for Ni2+. Chem. Sci. 2012, 3, 2110-2113.
    83. Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew. Chem. Int. Ed. 2021, 51, 10307-10310.
    84. Rajasree, S. S.; Li, X.; Deria, P. Physical properties of porphyrin-based crystalline metal‒organic frameworks. Commun. Chem. 2021, 4, 47.
    85. Pullen, S.; Fei, H. H.; Orthaber, A.; Cohen, S. M.; Ott, S. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135, 16997-17003.
    86. Evans, J. D.; Sumby, C. J.; Doonan, C. J. Post-Synthetic Metalation of Metal-Organic Frameworks. Chem. Soc. Rev. 2014, 43, 5933-5951.
    87. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A. Post-Synthetic Modification of Metal–Organic Frameworks Toward Applications. Adv. Funct. Mater. 2021, 31, 2006291.
    88. Doonan, C. J.; Morris, W.; Furukawa, H.; Yaghi, O. M. Isoreticular Metalation of Metal−Organic Frameworks. J. Am. Chem. Soc. 2009, 131, 9492-9493.
    89. Wu, C.-D.; Zhao, M. Incorporation of Molecular Catalysts in Metal–Organic Frameworks for Highly Efficient Heterogeneous Catalysis. Adv. Mater. 2017, 29, 1605446.
    90. Müller, M.; Hermes, S.; Kähler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chem. Mater. 2008, 20, 4576-4587.
    91. Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. J. Am. Chem. Soc. 2011, 133, 1304-1306.
    92. Tsuruoka, T.; Kawasaki, K.; Nawafune, H.; Akamatsu, K. Controlled Self-Assembly of Metal–Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. ACS Appl. Mater. Interfaces 2011, 3, 3788-3791.
    93. Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
    94. Li, Z.; Rayder, T. M.; Luo, L.; Byers, J. A.; Tsung, C.-K. Aperture-Opening Encapsulation of a Transition Metal Catalyst in a Metal–Organic Framework for CO2 Hydrogenation. J. Am. Chem. Soc. 2018, 140, 8082-8085.
    95. Wei, Y.-S.; Zhang, M.; Zou, R.; Xu, Q. Metal−Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089-12174.
    96. Yu, J.; Mu, C.; Yan, B.; Qin, X.; Shen, C.; Xue, H.; Pang, H. Nanoparticle/MOF composites: preparations and applications. Mater. Horiz. 2017, 4, 557-569.
    97. Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. Metal Insertion in a Microporous Metal−Organic Framework Lined with 2,2’-Bipyridine. J. Am. Chem. Soc. 2010, 132, 14382-14384.
    98. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J. 2004, 10, 1373-1382.
    99. Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër, D.; Férey, G. Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc. 2002, 124, 13519-13526.
    100. Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Filinchuk, Y.; Férey, G. How Hydration Drastically Improves Adsorption Selectivity for CO2 over CH4 in the Flexible Chromium Terephthalate MIL-53. Angew. Chem. Int. Ed. 2006, 45, 7751-7754.
    101. Senkovska, I.; Hoffmann, F.; Fröba, M.; Getzschmann, J.; Böhlmann, W.; Kaskel, S. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al(OH)(bpdc) (bpdc=4,4’-biphenyl dicarboxylate). Microporous Mesoporous Mater. 2009, 122, 93-98.
    102. Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. Different Adsorption Behaviors of Methane and Carbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127, 13519-13521.
    103. Valvekens, P.; Bloch, E. D.; Long, J. R.; Ameloot, R.; De Vos, D. E. Counteranion effects on the catalytic activity of copper salts immobilized on the 2,2’-bipyridine-functionalized metal-organic framework MOF-253. Catal. Today 2015, 246, 55-59.
    104. Zeeland, R. V.; Li, X.; Huang, W.; Stanley, L. M. MOF-253-Pd(OAc)2: a recyclable MOF for transition-metal catalysis in water. RSC adv. 2016, 6, 56330-56334.
    105. Deng, X.; Albero, J.; Li, X.; Garcia, H.; Li, Z. Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO2 Reduction. Inorg. Chem. 2018, 57, 8276-8286.
    106. Deng, X.; Qin, Y.; Hao, M.; Li, Z. MOF-253-Supported Ru Complex for Photocatalytic CO2 Reduction by Coupling with Semidehydrogenation of 1,2,3,4-Tetrahydroisoquinoline (THIQ). Inorg. Chem. 2019, 58, 16574-16580.
    107. Wang, N.; Xie, J.; Zhang, J. MOF-253 immobilized Pd and Cu as recyclable and efficient green catalysts for Sonogashira reaction. Arab. J. Chem. 2022, 15, 103962.
    108. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457-484.
    109. Epstein, S. T. Ground‐State Energy of a Molecule in the Adiabatic Approximation. J. Chem. Phys. 1966, 44, 836-837.
    110. Stanke, M.; Adamowicz, L. Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed. J. Phys. Chem. A 2013, 117, 10129-10137.
    111. Rafiq, S.; Weingartz, N. P.; Kromer, S.; Castellano, F. N.; Chen, L. X. Spin–vibronic coherence drives singlet–triplet conversion. Nature 2023, 620, 776-781.
    112. Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Math. Proc. Camb. Philos. Soc. 1928, 24, 89-110.
    113. Slater, J. C. A Generalized Self-Consistent Field Method. Phys. Rev. 1953, 91, 528.
    114. Flude, P. The Independent-Electron Approximation. In Electron Correlations in Molecules and Solids; Springer Series in Solid-State Sciences, vol. 100; Springer, 1993.
    115. Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Camb. Philos. Soc. 1928, 24, 111-132.
    116. Pauli, W. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Z. Phys. 1925, 31, 765-783.
    117. Slater, J. C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293.
    118. Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61, 126-148.
    119. Lennard-Jones, J. E. The electronic structure of some diatomic molecules. Trans. Faraday Soc. 1929, 25, 668-686.
    120. Hall, G. G. The Lennard-Jones paper of 1929 and the foundations of Molecular Orbital Theory. Adv. Quantum Chem. 1991, 22, 1-6.
    121. Slater, J. C. Atomic Shielding Constants. Phys. Rev. 1930, 36, 57.
    122. Boys, S. F. Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1950, 200, 542-554.
    123. Magalhães, A. L. Gaussian-Type Orbitals versus Slater-Type Orbitals: A Comparison. J. Chem. Educ. 2014, 91, 2124-2127.
    124. Levine, I. N. Perturbation Theory. In Quantum Chemistry; Pearson Advanced Chemistry Series, 7th ed.; Pearson Education, 2014.
    125. Parr, R. G. A Method for Estimating Electronic Repulsion Integrals Over LCAO MO'S in Complex Unsaturated Molecules. J. Chem. Phys. 1952, 20, 1499.
    126. Parison, R.; Parr, R. G. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I. J. Chem. Phys. 1953, 21, 466-471.
    127. Parison, R.; Parr, R. G. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II. J. Chem. Phys. 1953, 21, 767-776.
    128. GaussView 6.0; Semichem Inc., LLC: Kansa, 2019.
    https://gaussian.com/gaussview6/ (accessed 2024-01-11).
    129. Hückel, E. Quantentheoretische Beiträge zum Benzolproblem. Z. Physik, 1931, 70, 204-286.
    130. Hoffmann, R. An Extended Hückel Theory. I. Hydrocarbons. J. Chem. Phys. 1963, 39, 1397-1412.
    131. Pariser, R.; Parr, R. G. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. I. J. Chem. Phys.1953, 21, 466-471.
    132. Pariser, R.; Parr, R. G. A Semi‐Empirical Theory of the Electronic Spectra and Electronic Structure of Complex Unsaturated Molecules. II. J. Chem. Phys.1953, 21, 767-776.
    133. Pople, J. A. Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 1971, 67, 1375-1385.
    134. Pople, J. A.; Santry, D. P.; Segal, G. A. Approximate Self‐Consistent Molecular Orbital Theory. I. Invariant Procedures. J. Chem. Phys. 1965, 43, 129-135.
    135. Pople, J. A.; Santry, D. P. Approximate Self‐Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap. J. Chem. Phys. 1965, 43, 136-151.
    136. Pople, J. A.; Santry, D. P.; Segal, G. A. Approximate Self‐Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys. 1966, 44, 3289-3296.
    137. Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. Approximate Self‐Consistent Molecular Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47, 2026-2033.
    138. Pople, J. A.; Gordon, M. S. Approximate Self‐Consistent Molecular Orbital Theory. VI. INDO Calculated Equilibrium Geometries. J. Chem. Phys. 1968, 49, 4643-4650.
    139. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902-3909.
    140. Stewart, J. J. P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209-220.
    141. Stewart, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173-1213.
    142. Stewart, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2013, 19, 1-32.
    143. Ridley, J.; Zerner, M. An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theoret. Chim. Acta 1973, 32, 111-134.
    144. Krishnan, R.; Schlegel, H. B.; Pople, J. A. Derivative studies in configuration–interaction theory. J. Chem. Phys. 1980, 72, 4654-4655.
    145. Pople, J. A.; Seeger, R.; Krishnan, R. Variational configuration interaction methods and comparison with perturbation theory. Int. J. Quantum Chem. 1977, 12, 149-163.
    146. Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell‐Type Expansion Using Quantum‐Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256-4266.
    147. Purvis III, G. D.; Bartlett, R. J. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76, 1910-1918.
    148. Pople, J. A.; Head-Gordon, M.; Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies J. Chem. Phys. 1987, 87, 5968-5975.
    149. Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618-622.
    150. Gaussian 16; Gaussian, Inc., Wallingford CT, 2016.
    https://gaussian.com/ (accessed 2024-01-25).
    151. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. A direct MP2 gradient method. Chem. Phys. Lett. 1990, 166, 275-280.
    152. Thomas, T. H. The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 1927, 23, 542-548.
    153. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, 864-871.
    154. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.
    155. Gunnarsson, O.; Lundqvist, B. I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 1976, 13, 4274-4298.
    156. Langreth, D. C.; Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 1984, 28, 1809-1834.
    157. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.
    158. Perdew, J. P. Accurate Density Functional for the Energy: Real-Space Cutoff of the Gradient Expansion for the Exchange Hole. Phys. Rev. Lett. 1985, 55, 1665-1668.
    159. Kurth, S.; Perdew, J. P.; Blaha, P. Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. Int. J. Quantum Chem. 1999, 75, 889-909.
    160. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 77, 3865-3868.
    161. AMS 2020.101; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2020.
    http://www.scm.com/ (accessed 2024-02-20).
    162. ADF 2020.101; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2020.
    https://www.scm.com/doc/ADF/ (accessed 2024-02-20).
    163. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C., van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931-967.
    164. Tsuneda, T.; Hirao, K. Self-interaction corrections in density functional theory. J. Chem. Phys. 2014, 18, 18A513.
    165. Bursch, M.; Mewes, J.-M.; Hansens, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. 2022, 61, e2022057.
    166. Becke, A. D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys. 1993, 98, 1372-1377.
    167. Janesko, B. G.; Henderson, T. M.; Scuseria, G. E. Screened hybrid density functionals for solid-state chemistry and physics. Phys. Chem. Chem. Phys. 2009, 11, 443-454.
    168. Klaus, A. M.; Kasper, P. K. The Metal Hydride Problem of Computational Chemistry: Origins and Consequences. J. Phys. Chem. A 2019, 123, 2888-2900.
    169. Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Doubly Hybrid Meta DFT:  New Multi-Coefficient Correlation and Density Functional Methods for Thermochemistry and Thermochemical Kinetics. J. Phys. Chem. A 2004, 108, 4786-4791.
    170. Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 34108.
    171. Chai, J.-D.; Head- Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
    172. Yanai, T.; Tew, D. P.; Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51-57.
    173. Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 2004, 120, 8425-8433.
    174. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.
    175. Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 2001, 115, 3540-3544.
    176. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.
    177. Grimme, S.; Antony, J.; Enrlich, S.; Kreig, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
    178. Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017, 147, 34112.
    179. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.
    180. Becke, A. D.; Johnson, E. R. Exchange-hole dipole moment and the dispersion interaction. J. Chem. Phys. 2005, 122, 154104.
    181. Johnson, E. R.; Becke, A. D. A post-Hartree–Fock model of intermolecular interactions. J. Chem. Phys. 2005, 123, 24101.
    182. Becke, A. D.; Johnson, E. R. A density-functional model of the dispersion interactions. J. Chem. Phys. 2005, 123, 154101.
    183. Grimme, S.; Enrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456-1465.
    184. Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105-5154.
    185. Dolg, M.; Cao, X. Relativistic Pseudopotentials: Their Development and Scope of Applications. Chem. Rev. 2012, 112, 403-480.
    186. Pickett, W. E. Pseudopotential methods in condensed matter applications. Comput. Phys. Rep. 1989, 9, 115-197.
    187. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 1929, 52, 555-600.
    188. Kratzer, P.; Neugebauer, J. The Basics of Electronic Structure Theory for Periodic Systems. Front. Chem. 2019, 7, 106.
    189. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.
    190. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.
    191. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060.
    192. Morse, P, M. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. Phys. Rev. 1929, 34, 57.
    193. Halgren, T. A. The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 1992, 114, 7827-7843.
    194. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.
    195. Badger, R. M. A Relation Between Internuclear Distances and Bond Force Constants. J. Chem. Phys. 1934, 2, 2128-2131.
    196. Rappé, A. K.; Goddard III, W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991, 95, 3358-3363.
    197. Rappé, A. K.; Bormann-Rochotte, L. M.; Wiser, D. C.; Hart, J. R.; Pietsch, M. A.; Casewit, C. J.; Skiff, W. M. APT: A next generation QM-based reactive force field model. Mol. Phys. 2007, 105, 301-324.
    198. Addicoat, M. A.; Vankova, N.; Akter, I. F.; Heine, T. Extension of the Universal Force Field to Metal–Organic Frameworks. J. Chem. Theory Comput. 2014, 10,880-891.
    199. Coupry, D. E.; Addicoat, M. A.; Heine, T. Extension of the Universal Force Field for Metal–Organic Frameworks. J. Chem. Theory Comput. 2016, 12, 5215-5225.
    200. Lewars, E. G. The Concept of the Potential Energy Surface. In Computational Chemistry; Springer, 2010.
    201. Reveles, J. U.; Köster, A.M. Geometry optimization in density functional methods. J. Comput. Chem. 2004, 25, 1109-1116.
    202. Yang, Y.; Jiménez-Negrón, O. A.; Kitchin, J. R. Machine-learning accelerated geometry optimization in molecular simulation. J. Chem. Phys. 2021, 154, 234704.
    203. Shajan, A.; Manathunga, M.; Götz, A. W.; Merz Jr., Kenneth M. Geometry Optimization: A Comparison of Different Open-Source Geometry Optimizers. J. Chem. Theory Comput. 2023, 19, 7533-7541.
    204. Nazareth, J.L. Conjugate gradient method. WIREs Comp. Stat. 2009, 1, 348-353.
    205. transition state. In IUPAC Compendium of Chemical Terminology, 3rd ed.; International Union of Pure and Applied Chemistry, 2006.
    206. Mills, G.; Jonsson, H.; Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305-337.
    207. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
    208. Fonseca Guerra, C.; Handgraaf, J.-W.; Baerends, E. J.; Bickelhaupt, F. M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25, 189-210.
    209. Mulliken, R .S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833-1840.
    210. Mulliken, R .S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1841–1846.
    211. Mulliken, R .S. Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations. J. Chem. Phys. 1955, 23, 2338–2342.
    212. Mulliken, R .S. Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories. J. Chem. Phys. 1955, 23, 2343–2346.
    213. Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoret. Claim. Acta 1977, 44, 129-138.
    214. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354-360.
    215. Elliott, J. D.; Troisi, A.; Carbone, P. A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene. J. Chem. Theory Comput. 2020, 16, 5253–5263.
    216. Tzeliou, C. E.; Mermigki, M. A.; Tzeli, D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022, 27, 2660.
    217. van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard III, W. A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396-9409.
    218. Li, J.; Liu, Q.; Flores, R. A.; Lemmon, J.; Bligaard, T. DFT simulation of the X-ray diffraction pattern of aluminum-ion-intercalated graphite used as the cathode material of the aluminum-ion battery. Phys. Chem. Chem. Phys. 2020, 22, 5969-5975.
    219. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
    220. Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
    221. Momma, K.; Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653-658.
    222. AMS 2021.101; SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, 2021. http://www.scm.com (accessed 2024-05-05).
    223. Python 3.7; Python Software Foundation, 2021. https://www.python.org/ (accessed 2024-05-05).
    224. Pandas; Zenodo, 2020. https://doi.org/10.5281/zenodo.3509134 (accessed 2024-05-05).
    225. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90-95.
    226. Waskom, M. L. seaborn: statistical data visualization. J. open source softw. 2021, 6, 3021.
    227. Center for Cloud Computing. https://hpc.ntnu.edu.tw/index.php (accessed 2023-05-05).
    228. Petascale Supercomputer. https://iservice.nchc.org.tw/nchc_service/nchc_ service_hpc.php (accessed 2023-05-05).
    229. Thomas, J. M.; Raja, R.; Lewis, D. W. Single-Site Heterogeneous Catalysts. Angew. Chem. Int. Ed. 2005, 44, 6456-6482.
    230. Kaes, C.; Katz, A.; Hosseini, M. W. Bipyridine:  The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2‘-Bipyridine Units. Chem. Rev. 2000, 100, 3553-3590.
    231. Elgrishi, N.; Chambers, M. B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem. Soc. Rev. 2017, 46, 761-796.
    232. Wang, Y.; Shi, Y.; Xiong, D.; Li, Z.; Wang, H.; Xuan, X.; Wang, J. Metal chloride functionalized MOF-253(Al) for high-efficiency selective separation of ammonia from H2 and N2. J. Chem. Eng. 2023, 474, 145307.
    233. Sun, D.; Gao, Y.; Fu, J.; Zeng, X.; Chen, Z.; Li, Z. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light. Chem. Commun. 2015, 51, 2645-2648.
    234. Zhan, W.; Gao, H.; Yang, Y.; Li, X.; Zhu, Q.-L. Rational Design of Metal-Organic Framework-Based Materials for Photocatalytic CO2 Reduction. Adv. Energy Sustainability Res. 2022, 3, 2200004.
    235. Wilmer, C. E.; Leaf, M., Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. O. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 2012, 4, 83-89.
    236. Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785-789.
    237. Stephens, P. J.; Devlin, F. J.; Ashvar, C. S.; Chabalowski, C. F.; Frisch, M. J. Theoretical Calculation of Vibrational Circular-Dichroism Spectra. Faraday Discuss. 1994, 99, 103-119.
    238. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294-301.
    239. Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self-Consistent Molecular-Orbital Methods 25. Supplementary Functions for Gaussian-Basis Sets. J. Chem. Phys. 1984, 80, 3265-3269.
    240. Johnson, S. I.; Nielsen, R. J.; Goddard, W. A. Selectivity for HCO2- over H2 in the Electrochemical Catalytic Reduction of CO2 by (POCOP)IrH2. ACS Catal. 2016, 6, 6362-6371.
    241. An, B.; Li, Z.; Song, Y.; Zhang, J.; Zeng, L.; Wang, C.; Lin, W. Cooperative Copper Centres in a Metal–Organic Framework for Selective Conversion of CO2 to Ethanol. Nat. Catal. 2019, 2, 709-717.
    242. Madsen, M. R.; Rønne, M. H.; Heuschen, M.; Golo, D.; Ahlquist, M. S. G.; Skrydstrup, T.; Pedersen, S. U.; Daasbjerg, D. Promoting Selective Generation of Formic Acid from CO2 Using Mn(bpy)(CO)3Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. J. Am. Chem. Soc. 2021, 143, 20491-20500.
    243. Cramer, H. H.; Ye, S.; Neese, F.; Werlé, C.; Leitner, W. Cobalt-Catalyzed Hydrosilylation of Carbon Dioxide to the Formic Acid, Formaldehyde, and Methanol Level—How to Control the Catalytic Network? J. Am. Chem. Soc. Au 2021, 1, 2058-2069.
    244. Chang, T.-C. A Mechanistic Study of Shale Gas Hydroxylated by Adsorbing Different η Type CO2 on MOF-253 Supported Metal-Complexes by Computation Chemistry. M.S. Thesis, National Taiwan Normal University, Taipei, Taiwan, 2022.
    245. Heimann, J. E.; Bernskoetter, W. H.; Hazari, N.; Mayer, J. M. Acceleration of CO2 insertion into metal hydrides: ligand, Lewis acid, and solvent effects on reaction kinetics. Chem. Sci. 2018, 9, 6629-6638.
    246. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735-746.
    247. Matus, M. H.; Nguyen, M. T.; Dixon, D. A.; Peterson, K. A.; Francisco, J. S. ClClO2 Is the Most Stable Isomer of Cl2O2. Accurate Coupled Cluster Energetics and Electronic Spectra of Cl2O2 Isomers. J. Phys. Chem. A 2008, 112, 9623-9627.

    248. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
    249. Vahabi, A. H.; Norouzi, F.; Sheibani, E.; Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord. Chem. Rev. 2021, 445, 214050.
    250. Li, L.; Tang, S.; Wang, C.; Lv, X.; Jiang, M.; Wua, H.; Zhao, H. High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chem. Commun. 2014, 50, 2304-2307.
    251. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8, 7451-7457.
    252. Fei, H.; Cohen, S. M. A robust, catalytic metal–organic framework with open 2,2′-bipyridine sites. Chem. Commun. 2014, 50, 4810-4812.
    253. Chen, L.; Gao, Z.; Li, Y. Immobilization of Pd(II) on MOFs as a highly active heterogeneous catalyst for Suzuki–Miyaura and Ullmann-type coupling reactions. Catal. Today 2015, 245, 122-128.
    254. Chen, L.; Rangan, S.; Li, J.; Jianga, H.; Li. Y. A molecular Pd(ii) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for C–Cl bond activation. Green Chem. 2014, 16, 3978-3985.
    255. Øien-Ødegaard, S.; Bouchevreau, B.; Hylland, K.; Wu, L.; Blom, R.; Grande, C.; Olsbye, U.; Tilset, M.; Lillerud, K. P. UiO-67-type Metal–Organic Frameworks with Enhanced Water Stability and Methane Adsorption Capacity. Inorg. Chem. 2016, 55, 1986-1991.
    256. Dunning Jr., T. H. Gaussian Basis Functions for Use in Molecular Calculations. I. Contraction of (9s5p) Atomic Basis Sets for the First‐Row Atoms. J. Chem. Phys. 1970, 53, 2823-2833.
    257. Hsieh, M.-C.; Krishnan, R.; Tsai, M.-K. Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts 2022, 12, 890.
    258. Gould, S. L.; Tranchemontagne, D.; Yaghi, O. M.; Garcia-Garibay, M. A. Amphidynamic Character of Crystalline MOF-5: Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment. J. Am. Chem. Soc. 2008, 130, 3246-3247.
    259. Gonzalez-Nelson, A.; Coudert, F.-X.; van der Veen, M. A. Rotational Dynamics of Linkers in Metal–Organic Frameworks. Nanomater. 2019, 9, 330.
    260. Yan, Y.; Kolokolov, D. I.; da Silva, I.; Stepanov, A. G.; Blake, A. J.; Dailly, A.; Manuel, P.; Tang, C. C.; Yang, S.; Schröder, M. Porous Metal–Organic Polyhedral Frameworks with Optimal Molecular Dynamics and Pore Geometry for Methane Storage. J. Am. Chem. Soc. 2017, 139, 13349-13360.
    261. Inukai, M.; Fukushima, T.; Hijikata, Y.; Ogiwara, N.; Horike, S.; Kitagawa, S. Control of Molecular Rotor Rotational Frequencies in Porous Coordination Polymers Using a Solid-Solution Approach. J. Am. Chem. Soc. 2015, 137, 12183-12186.
    262. Vogelsberg, C. S.; Uribe-Romo, F. J.; Lipton, A. S.; Yang, S.; Houk, K. N.; Brown, S.; Garcia-Garibay, M. A. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. 2017, 114, 13613-13618.
    263. Kottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Artificial Molecular Rotors. Chem. Rev. 2005, 105, 1281–1376.
    264. Spiess, H. W. Molecular Dynamics of Solid Polymers as Revealed by Deuteron NMR. Colloid Polym. Sci. 1983, 261, 193–209.
    265. Henrichs, P. M.; Hewitt, J. M.; Linder, M. Experimental Aspects of Deuterium NMR of Solids. J. Magn. Reson. 1984, 60, 280–298.
    266. Damron, J. T.; Ma, J.; Kurz, R.; Saalwächter, K.; Matzger, A. J.; Ramamoorthy, A. The Influence of Chemical Modification on Linker Rotational Dynamics in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2018, 57, 8678–8681.
    267. Winston, E. B.; Lowell, P. J.; Vacek, J.; Chocholousová, J.; Michl, J.; Price, J. C. Dipolar Molecular Rotors in the Metal-Organic Framework Crystal IRMOF-2. Phys. Chem. Chem. Phys. 2008, 10, 5188–5191.
    268. Devautour-Vinot, S.; Maurin, G.; Serre, C.; Horcajada, P.; Paula Da Cunha, D.; Guillerm, V.; De Souza Costa, E.; Taulelle, F.; Martineau, C. Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chem. Mater. 2012, 24, 2168–2177.
    269. Ryder, M. R.; Civalleri, B.; Bennett, T. D.; Henke, S.; Rudić, S.; Cinque, G.; Fernandez-Alonso, F.; Tan, J.-C. Identifying the Role of Terahertz Vibrations in Metal-Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Structural Destabilization. Phys. Rev. Lett. 2014, 113, 215502.
    270. Zhou, W.; Yildirim, T. Lattice Dynamics of Metal-Organic Frameworks: Neutron Inelastic Scattering and First-Principles Calculations. Phys. Rev. B 2006, 74, 180301.
    271. Kuc, A.; Enyashin, A.; Seifert, G. Metal−Organic Frameworks: Structural, Energetic, Electronic, and Mechanical Properties. J. Phys. Chem. B 2007, 111, 8179–8186.
    272. Wu, Y.; Wei, L.; Wang, H.; Chen, L.; Zhang, Q. First principles study of enhanced CO2 adsorption on MOF-253 by salt-insertion. Comput. Mater. Sci. 2016, 111, 79-85,
    273. Haigis, V.; Coudert, F.-X.; Vuilleumier, R.; Boutin, A.; Fuchs, A. H. Hydrothermal Breakdown of Flexible Metal–Organic Frameworks: A Study by First-Principles Molecular Dynamics. J. Phys. Chem. Lett. 2015, 6, 4365–4370.
    274. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.
    275. Zhou, T.; Du, Y.; Borgna, A.; Hong, J.; Wang, Y.; Han, J.; Zhang, W.; Xu, R. Post-Synthesis Modification of a Metal-Organic Framework to Construct a Bifunctional Photocatalyst for Hydrogen Production. Energy Environ. Sci. 2013, 6, 3229-3234.

    下載圖示
    QR CODE