簡易檢索 / 詳目顯示

研究生: 楊大緯
Yang, Ta-Wei
論文名稱: (一)以第一原理計算方法探討魔術尺寸奈米團簇(CdSe)13之結構與性質 (二) 單分子電子傳輸中的衰退係數之理論研究
(I) A First-principles Investigation on the Structure and Physical Properties of the Magic-size (CdSe)13 Nanoclusters (II) Theoretical Study on the Decay Constant in Quantum Transport through Single Molecular Junctions
指導教授: 李祐慈
Li, Yu-Tzu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 第一原理計算(CdSe)13奈米團簇單分子電子傳輸衰退係數
英文關鍵詞: First-principles calculations, (CdSe)13 nanoclusters, decay constant
DOI URL: https://doi.org/10.6345/NTNU202203117
論文種類: 學術論文
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文共分為兩個部分,第一部分是以第一原理計算方法探討魔術尺寸之奈米團簇(CdSe)13之結構與物理性質。第二部分是以理論計算方法探討單分子電子傳輸中的衰退係數。
    在第一部份中,我們希望能以理論計算的方式了解劉沂欣教授研究團隊實驗觀察之CdSe奈米團簇的真實構型。由於目前的實驗技術僅能觀察到奈米團簇的外觀及大小,並無法確定實際原子的幾何結構。我們參考過去的文獻,選定C3-球殼、C1-籠狀及C3V-柱狀結構作為我們研究的對象,並在裸核加上甲胺及乙胺模擬實驗所用的正辛胺及油胺。和實驗比對後,我們提出柱狀結構的二聚體模型,顛覆了過去文獻中一致的C3-球殼模型。我們提出的CdSe奈米團簇構型不僅最為符合SAXS實驗觀察的尺寸,也符合吸收光譜與CD光譜的結果。也提出CdSe奈米團簇為何會形成二聚體的物理原因。
    第二部分中我們對於不同的分子骨架在量子傳輸中的衰退係數進行探討。在單分子量子傳輸中,導電度隨分子長度呈指數遞減,遞減之速度由「衰退係數」(decay constant)而定。先前有文獻以Hückel Model提出,衰退係數可由長鏈分子骨架的基本重複單元求出,不受電極或連接基團的影響,但尚未獲得第一原理計算之驗證。本研究選用了單鍵、雙鍵及三鍵的分子骨架,以不同層級的電子傳導方法進行分子導電度的計算與研究。在計算方法上,分別使用了正交基底函數(orthogonal basis set)的瓦尼爾軌域方法(Wannier orbital, WO)配合虛擬電極針對分子部分,使用格林函數方法(Green’s Function Method)進行包含左右電極之系統,以及以模組近似法(Modular Approach)對分子骨架之重複單元,計算出衰退係數。

    This study includes two parts. The first-part is a first-principles investigation on the structure and physical properties of the magic-size (CdSe)13 nanoclusters, and the second part is a theoretical study on the decay constant in quantum transport through single molecular junctions.
    In first part, we investigated the structure and configuration of the experimentally synthesized CdSe nanoclusters using computational approaches. Based on previous literatures, we examined the C3-cage-core, the C1-cage, and the C3V-tubular structure for the (CdSe)13 nanoclusters. Both the bare and the ligated clusters were considered, using the methylamine and ethylamine to mimic the octylamine and oleylamine used in the experiment. Based on our calculation results, we propose a dimerized tubular model for the CdSe clusters, which is drastically different from the previous C3-cage-core model. This model not only matches well with the experimental SAXS result for the size and shape of the nanoclusters, but also shows a good correspondence to the absorbance and CD spectra. The underlying physical reason for the dimerization is also proposed.
    In second part, several theoretical methods were used to study the attenuation factor in the quantum transport of different molecular frameworks. In electron transport through single molecules, it is known that the quantum conductance decreases exponentially with increasing molecular length, and the extent of decrease is determined by the decay constant. Previous Hückel Model studies, suggested that the decay constant may be determined solely by the repeating unit of the molecular framework, and is not affected by the electrode or the linkage group, but a first-principles validation has not yet been performed. Here we investigated different molecules consisted of single, double, and triple-bond frameworks, and adopted three theoretical methods of different levels to calculate the molecular conductance. In the first method, an orthogonal Wannier basis set and a virtual electrode was adopted to study the central molecules. In the second method, we use the Green’s Function method to study the molecule linked to a nanographene electrode. In the third one, we apply the modular approach to the Hamiltonian of the repeating unit derived ab initially, and calculate the decay constant.

    中文摘要 V Abstract VI 第一部分:以第一原理計算方法探討魔術尺寸奈米團簇(CdSe)13之結構與性質 1 第一章 緒論 1 1.1 量子點簡介 1 1.2 (CdSe)n結構介紹 2 1.3 量子侷限效應及量子點的光譜性質 5 1.4 研究目標 6 第二章 計算原理及參數 7 2.1 計算使用的參數 7 2.2 分子靜電位能面 8 2.3 本篇所使用的參數 9 第三章 結果與討論 10 3.1 (CdSe)13裸核之最穩定結構 10 3.2 (CdSe)13與配位基 12 3.3 配位基和(CdSe)13團簇的結合能 15 3.4 團簇尺寸 16 3.5 二聚體的團簇 18 3.6 團簇光譜 19 第四章 結論 26 參考資料 27 第二部分:單分子電子傳輸中的衰退係數之理論研究 30 第一章 緒論 30 1.1 前言 30 1.2 導電分子的組成 32 1.3 量子干涉效應 (Quantum Interference Effect) 32 1.4 分子的衰退係數與電導 34 1.5 分子長度與傳導機制 36 1.6 不同層級的第一原理計算 37 第二章 計算原理 39 2.1 雙電極量子傳輸系統的格林函數 40 2.2 Modular Approach 42 第三章、結果與討論 51 3.1 第一種方法:Wannier Orbital Basis配合虛擬電極 51 3.2 全電極計算的衰退係數探討 68 3.3 以WO Hamiltonian帶入Modular Approach 計算衰退係數 73 第四章 結論 85 參考資料 86

    (一)以第一原理計算方法探討魔術尺寸奈米團簇(CdSe)13之結構與性質
    1. Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Grätzel, M., Cleavage of Water by Visible-Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2. Angewandte Chemie International Edition in English 1981, 20 (11), 987-988.
    2. Harris, C.; Kamat, P. V., Photocatalysis with CdSe Nanoparticles in Confined Media: Mapping Charge Transfer Events in the Subpicosecond to Second Timescales. ACS Nano 2009, 3 (3), 682-690.
    3. Harris, C.; Kamat, P. V., Photocatalytic Events of CdSe Quantum Dots in Confined Media. Electrodic Behavior of Coupled Platinum Nanoparticles. ACS Nano 2010, 4 (12), 7321-7330.
    4. Kasuya, A.; Sivamohan, R.; Barnakov, Y. A.; Dmitruk, I. M.; Nirasawa, T.; Romanyuk, V. R.; Kumar, V.; Mamykin, S. V.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Kudo, T.; Terasaki, O.; Liu, Z.; Belosludov, R. V.; Sundararajan, V.; Kawazoe, Y., Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 2004, 3 (2), 99-102.
    5. Gao, Y.; Zhou, B.; Kang, S.-g.; Xin, M.; Yang, P.; Dai, X.; Wang, Z.; Zhou, R., Effect of ligands on the characteristics of (CdSe)13 quantum dots. RSC Advances 2014, 4 (52), 27146-27151.
    6. Yang, P.; Tretiak, S.; Ivanov, S., Influence of Surfactants and Charges on CdSe Quantum Dots. J. Cluster Sci. 2011, 22 (3), 405.
    7. Azpiroz, J. M.; Matxain, J. M.; Infante, I.; Lopez, X.; Ugalde, J. M., A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster. Phys. Chem. Chem. Phys. 2013, 15 (26), 10996-11005.
    8. Nguyen, K. A.; Day, P. N.; Pachter, R., Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction. J. Phys. Chem. C 2010, 114 (39), 16197-16209.
    9. Del Ben, M.; Havenith, R. W. A.; Broer, R.; Stener, M., Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclusters. J. Phys. Chem. C 2011, 115 (34), 16782-16796.
    10. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox Gaussian 09, Revision A.1; Gaussian, Inc: Wallingford, CT, 2009.
    11. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37 (2), 785-789.
    12. Becke, A. D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. J. Chem. Phys 1992, 96 (3), 2155-2160.
    13. Perdew, J. P.; Ernzerhof, M.; Burke, K., Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys 1996, 105 (22), 9982-9985.
    14. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys 1999, 110 (13), 6158-6170.
    15. Martin, J. M. L.; Sundermann, A., Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe. J. Chem. Phys 2001, 114 (8), 3408-3420.
    16. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H., Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77 (2), 123-141.
    17. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H., Energy‐adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys 1987, 86 (2), 866-872.
    18. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80 (6), 1431-1441.
    19. Hehre, W. J.; Ditchfield, R.; Pople, J. A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys 1972, 56 (5), 2257-2261.
    20. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A., Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J. Chem. Phys 1982, 77 (7), 3654-3665.
    21. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105 (8), 2999-3094.
    22. Sangthong, W.; Limtrakul, J.; Illas, F.; Bromley, S. T., Persistence of magic cluster stability in ultra-thin semiconductor nanorods. Nanoscale 2010, 2 (1), 72-7.
    23. Nguyen, K. A.; Pachter, R.; Day, P. N., Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters. J. Chem. Theory Comput. 2013, 9 (8), 3581-3596.

    (二) 單分子電子傳輸中的衰退係數之理論研究
    1. Aviram, A.; Ratner, M. A., Molecular rectifiers. Chem. Phys. Lett. 1974, 29 (2), 277-283.
    2. He, J.; Sankey, O.; Lee, M.; Tao, N.; Li, X.; Lindsay, S., Measuring single molecule conductance with break junctions. Faraday Discuss. 2006, 131 (0), 145-154.
    3. Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F., Charge Transport in Single Au | Alkanedithiol | Au Junctions:  Coordination Geometries and Conformational Degrees of Freedom. J. Am. Chem. Soc. 2008, 130 (1), 318-326.
    4. Frei, M.; Aradhya, S. V.; Koentopp, M.; Hybertsen, M. S.; Venkataraman, L., Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure. Nano Lett. 2011, 11 (4), 1518-1523.
    5. Tao, N. J., Electron transport in molecular junctions. Nat Nano 2006, 1 (3), 173-181.
    6. Kaliginedi, V.; V. Rudnev, A.; Moreno-Garcia, P.; Baghernejad, M.; Huang, C.; Hong, W.; Wandlowski, T., Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16 (43), 23529-23539.
    7. Bürkle, M.; Xiang, L.; Li, G.; Rostamian, A.; Hines, T.; Guo, S.; Zhou, G.; Tao, N.; Asai, Y., The Orbital Selection Rule for Molecular Conductance as Manifested in Tetraphenyl-Based Molecular Junctions. J. Am. Chem. Soc. 2017, 139 (8), 2989-2993.
    8. Sedghi, G.; Sawada, K.; Esdaile, L. J.; Hoffmann, M.; Anderson, H. L.; Bethell, D.; Haiss, W.; Higgins, S. J.; Nichols, R. J., Single Molecule Conductance of Porphyrin Wires with Ultralow Attenuation. J. Am. Chem. Soc. 2008, 130 (27), 8582-8583.
    9. Sedghi, G.; Garcia-Suarez, V. M.; Esdaile, L. J.; Anderson, H. L.; Lambert, C. J.; Martin, S.; Bethell, D.; Higgins, S. J.; Elliott, M.; Bennett, N.; Macdonald, J. E.; Nichols, R. J., Long-range electron tunnelling in oligo-porphyrin molecular wires. Nat Nano 2011, 6 (8), 517-523.
    10. Solomon, G. C.; Andrews, D. Q.; Hansen, T.; Goldsmith, R. H.; Wasielewski, M. R.; Van Duyne, R. P.; Ratner, M. A., Understanding quantum interference in coherent molecular conduction. J. Chem. Phys 2008, 129 (5), 054701.
    11. Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L., Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442 (7105), 904-907.
    12. Liao, K.-C.; Hsu, L.-Y.; Bowers, C. M.; Rabitz, H.; Whitesides, G. M., Molecular Series-Tunneling Junctions. J. Am. Chem. Soc. 2015, 137 (18), 5948-5954.
    13. Khoo, K. H.; Chen, Y.; Li, S.; Quek, S. Y., Length dependence of electron transport through molecular wires - a first principles perspective. Phys. Chem. Chem. Phys. 2015, 17 (1), 77-96.
    14. Hsu, L.-Y.; Rabitz, H., Theory of molecular conductance using a modular approach. J. Chem. Phys 2016, 145 (23), 234702.
    15. Holmlin, R. E.; Haag, R.; Chabinyc, M. L.; Ismagilov, R. F.; Cohen, A. E.; Terfort, A.; Rampi, M. A.; Whitesides, G. M., Electron Transport through Thin Organic Films in Metal−Insulator−Metal Junctions Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 2001, 123 (21), 5075-5085.
    16. Quek, S. Y.; Choi, H. J.; Louie, S. G.; Neaton, J. B., Length Dependence of Conductance in Aromatic Single-Molecule Junctions. Nano Lett. 2009, 9 (11), 3949-3953.
    17. Moreno-García, P.; Gulcur, M.; Manrique, D. Z.; Pope, T.; Hong, W.; Kaliginedi, V.; Huang, C.; Batsanov, A. S.; Bryce, M. R.; Lambert, C.; Wandlowski, T., Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution. J. Am. Chem. Soc. 2013, 135 (33), 12228-12240.
    18. Lu, Q.; Liu, K.; Zhang, H.; Du, Z.; Wang, X.; Wang, F., From Tunneling to Hopping: A Comprehensive Investigation of Charge Transport Mechanism in Molecular Junctions Based on Oligo(p-phenylene ethynylene)s. ACS Nano 2009, 3 (12), 3861-3868.
    19. Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L., Single-Molecule Circuits with Well-Defined Molecular Conductance. Nano Lett. 2006, 6 (3), 458-462.
    20. Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martín, S.; Nichols, R. J.; Higgins, S. J.; García-Suárez, V. M.; Lambert, C. J., Oligoyne Single Molecule Wires. J. Am. Chem. Soc. 2009, 131 (43), 15647-15654.
    21. Ho Choi, S.; Kim, B.; Frisbie, C. D., Electrical Resistance of Long Conjugated Molecular Wires. Science 2008, 320 (5882), 1482.

    無法下載圖示 本全文未授權公開
    QR CODE