簡易檢索 / 詳目顯示

研究生: 許敏柔
Hsu, Min-Jo
論文名稱: 基隆火山群安山岩岩象學與石英來源之再探討
A further study on petrography and the origin of quartz in the andesite from Chilung Volcano Groups
指導教授: 賴昱銘
Lai, Yu-Ming
口試委員: 劉德慶
Liu, Teh-Ching
葉恩肇
Yeh, En-Chao
賴昱銘
Lai, Yu-Ming
口試日期: 2023/07/10
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 基隆山基隆嶼石英岩象學
英文關鍵詞: Chilungshan, Chilungyu, Quartz, Petrography
研究方法: 調查研究主題分析
DOI URL: http://doi.org/10.6345/NTNU202301602
論文種類: 學術論文
相關次數: 點閱:88下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基隆火山群位於北台灣火山活動帶的東北部,其火山體包含了基隆山、本山、武丹山、草山與雞母嶺。此外,在基隆市東北方外海的基隆嶼因形成年代、岩性特徵和地理位置皆與基隆火山群十分接近,經常被歸類於基隆火山群中一起討論。在北台灣火山活動帶中的火成岩中,僅在基隆火山群裡發現火成岩中含有肉眼可辨的石英顆粒,這是很特別的現象,而此現象與基隆火山群的岩石命名有緊密的關聯。從較早的文獻至今,學者們有著不同的發現與討論,經由岩象觀察、主要元素含量、氧同位素、實驗岩石學等方式,探討應稱呼其為石英安山岩、安山岩或含有石英的安山岩等稱呼上的分歧,而本研究在前人文獻的基礎之上,再以岩象學礦物計數、全岩地球化學分析結果,來加以探討這個議題,認為基隆火山群的火山岩應稱為安山岩或含有石英的安山岩。
      關於基隆火山群火成岩特有的石英顆粒,本研究以岩象搭配石英顆粒電子影像,探討其石英顆粒的來源。在電子影像中,發現石英顆粒外表大多具有平滑表面或者貝狀斷口,岩象觀察中,部分石英顆粒為自形、單顆分布,可能代表石英為岩漿本身晶出;而電子影像中極少部分石英顆粒有小面積類似沉積岩的不平滑表面,岩象學觀察中,石英顆粒有渾圓的外表,可能代表石英是捕獲周圍沉積岩而來。另外,在岩象學觀察中發現石英顆粒具有灣狀構造,其造成原因有可能為岩漿捕獲周圍沉積岩而將石英熔蝕,也可能是石英顆粒於岩漿庫生成後,在岩漿上升過程中經過溫壓改變而有不穩定的狀態而造成。綜合各種特徵,本研究推論石英來自岩漿晶出或者由沉積岩捕獲而來,兩者皆有可能,甚至是兩種來源皆存在。
      另外,因基隆嶼在前人文獻中,表現出部分資訊與基隆火山群相近的訊息,但也有部分文獻發現基隆嶼和大屯火山群的資訊較為相關,於是有了基隆嶼歸屬的議題討論,本研究以全岩主要元素與微量元素、全岩鍶釹同位素,以及前段敘述的石英顆粒特徵觀察等方法,並參考前人文獻,認為基隆嶼和基隆火山群可能來自不同岩漿庫。

    The Chilung Volcano Groups is located in the northeastern part of the Northern Taiwan Volcanic Zone, including volcanoes such as Chilungshan, Penshan, Wutanshan, Tsaoshan, and Chimuling. Additionally, Chilungyu, located off the northeastern coast of Chilung City is frequently discussed in connection with the Chilung Volcano Groups due to its similar eruption age, petrographic characteristics, and geographic location. Among the igneous rocks in the Northern Taiwan Volcanic Zone, a distinctive feature unique to the Chilung Volcano Group is the presence of visible quartz grains in its igneous rocks. Previous researchers have provided various rock classifications for volcanic rocks from the Chilung Volcano Group, including dacite, andesite, and quartz-andesite. Their studies contented petrographic observations, whole-rock geochemistry, oxygen isotopic analyses, and experimental petrological study. Based on previous studies, this study examines this issue with classification by whole-rock major elements and petrography, and concludes that the volcanic rocks of the Chilung Volcano Groups should be referred to as andesite or quartz-andesite.
    Regarding the unique quartz grains found in the volcanic rocks of the Chilung Volcano Groups, this study investigate their origin using petrographic analysis combined with electron images of quartz grains. In the electronic images, it was observed that most quartz grains have smooth surfaces or conchoidal fractures. Petrographic observations revealed that some quartz grains are euhedral and single-particle, possibly indicating their crystallization from the magma itself. On the other hand, a small portion of quartz grains in the electronic images exhibit slightly uneven surfaces resembling sedimentary rocks, and petrographic observations showed that these quartz grains have rounded appearances, suggesting they might have been captured from surrounding sedimentary rocks. Furthermore, in petrographic observations, it was discovered that the quartz grains exhibit embayment texture, which could be the result of the magma melting and eroding the surrounding sedimentary rocks, or it could be due to unstable conditions caused by temperature and pressure changes as the quartz grains formed in the magma chamber and experienced variations during the magma ascent process. Taking into consideration all these features, this study concludes that the quartz grains in the volcanic rocks could have originated from either crystallization within the magma or from being captured from sedimentary rocks.
    This study employs methods including whole-rock major and trace elements, whole-rock strontium-neodymium isotopes, and the observation of quartz grain characteristics. By referencing previous literature, it is suggested that Chilungyu and the Chilung Volcano Group likely originate from distinct magma reservoirs.

    第一章 前言 1 1.1北台灣火山活動帶岩象組合 1 1.2基隆火山群-石英顆粒的來源 2 1.3基隆嶼的歸屬 4 第二章 地質背景 6 2.1地質概況 6 2.2基隆火山群 8 2.2.1基隆火山群火山岩命名議題 9 2.2.2基隆山與基隆嶼 11 第三章 研究方法 17 3.1樣本採集 17 3.2岩象學分析 18 3.2.1岩石薄片製作 18 3.2.2礦物計數 18 3.3掃描式電子顯微鏡分析 20 3.3.1樣本分析前處理-分礦 20 3.3.2掃描式電子顯微鏡分析 20 3.4全岩主要元素分析 22 3.4.1樣本分析前處理 22 3.4.2燒失量試驗 (Loss on ignition, L.O.I.) 22 3.4.3全岩主要元素分析 23 3.5全岩微量元素分析 24 3.5.1岩石樣本分析前處理-溶樣 24 3.5.2 USGS岩石標準樣品 25 3.6全岩鍶釹同位素分析 28 3.6.1岩石樣本分析前處理-溶解樣本粉末 28 3.6.2鍶釹同位素化學分離步驟 29 3.6.3質譜儀分析 31 第四章 結果 33 4.1岩象學觀察-礦物比例與特徵 33 4.2石英顆粒的電子影像 40 4.3全岩主要元素分析結果 47 4.4全岩微量元素分析結果 54 4.5全岩鍶釹同位素分析結果 58 第五章 討論 64 5.1基隆火山群火山岩之命名 64 5.1.1前人文獻在基隆火山群火山岩命名之根據 64 5.1.2本研究對於基隆火山群火山岩之命名 66 5.2石英來源之探討 67 5.2.1石英空間分布情形 67 5.2.2石英顆粒特徵歸納以及石英的來源 67 5.3基隆山與基隆嶼地球化學特性 71 5.3.1地球化學前人文獻 71 5.3.2 本研究地球化學結果 71 5.4石英來源與基隆火山群成因研究之建議 73 第六章 結論 74 參考文獻 76 附錄1石英顆粒的電子影像 84

    Bauer, G. R. (1970). The geology of Toufa Island, Touga: Pacific Science, 24, 330-350.
    Blatt, H., & Christie, J. M. (1963). Undulatory extinction in quartz of igneous and metamorphic rocks and its significance in provenance studies of sedimentary rocks. Journal of Sedimentary Research, 33(3), 559-579.
    Bowen, N. L. (1928). The Evolution of the Igneous Rocks. Princeton University Press, Princeton NJ. 332p.
    Brenan, J. M., Shaw, H. F., Ryerson, F. J., & Phinney, D. L. (1995). Mineral-aqueous fluid partitioning of trace elements at 900 C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta, 59(16), 3331-3350.
    Bryan, W. B., Stice, G. D., & Ewart, A. (1972). Geology, petrography, and geochemistry of the volcanic island of Touga: Journal of Geophysical Research, 77, 1566-1585.
    Chen, C. H. (1978). Petrochemistry and origin of Pleistocene volcanic rocks from northern Taiwan. Bull. Volcano, 41, 513-528.
    Chen, C. H. (1999). Petrogenesis of the Chilung Volcano Group andesites in northern Taiwan: mixing with shallow sediments and amphibole-rich nodules in the andesitic melts. Journal of the Geological Society of China, 42, 559-592.
    Chen, C. H., Tan, L. P., Tien, R. L., Chung, S. H., & Liu, T. K. (1993). Fission track age dating of igneous rocks and silicified sandstones from the Chilung Volcano Group, northern Taiwan: implication of mineralization events of the Chinkuashih gold-copper deposits. Journal of the Geological Society of China, 36, 157-174.
    Chu, M. F., Lai, Y. M., Li, Q., Chen, W. S., Song, S. R., Lee, H. Y., & Lin, T. H. (2018). Magmatic pulses of the Tatun Volcano Group, northern Taiwan, revisited Constraints from zircon U-Pb ages and Hf isotopes. Journal of Asian Earth Sciences, 167, 209-217.
    Cunningham, H. S., Turner, S. P., Dosseto, A., Patia, H., Eggins, S. M., & Arculus, R. J. (2009). Temporal variations in U-series disequilibria in an active caldera, Rabaul, Papua New Guinea. Journal of Petrology, 50(3), 507-529.
    Faure, G., & Mensing, T. M. (2005). Principles and applications. John Wiley & Sons, Inc., p. 897.
    Gill, J. B.(1981). Orogenic andesites and plate tectonics. Springer-Verlage, New York, 390pp.
    Harker, A. (1909). The natural history of igneous rocks. Methuen and Co., London, 1-344.
    Hawkesworth, C., Turner, S., Peate, D., McDermott, F., & Van Calsteren, P. (1997). Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chemical Geology, 139(1-4), 207-221.
    Hwang, J. Y., & Meyer, H. O. A. (1983). Dacite-andesite of the Chinkuashih region, northern Taiwan. Proceedings of the Geological Society of China, 25, 67–81.
    Ichimura, T. (1934). The inclusion of andalusite and cordierite-bearing metamorphic rock in the guartz andesite of Kiirun Island (Chilungtao). Taiwan Tigaku Kizi, 5, 84-86. (In Japanese)
    Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50(1), 139-155.
    Jochum, K. P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., & Hofmann, A. W. (2005). GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333-338.
    Jochum, K. P., Weis, U., Schwager, B., Stoll, B., Wilson, S. A., Haug, G. H., Andreae, M. O. & Enzweiler, J. (2016). Reference values following ISO guidelines for frequently requested rock reference materials. Geostandards and Geoanalytical Research, 40(3), 333-350.
    Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., & Enzweiler, J. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards and Geoanalytical Research, 35(4), 397-429.
    Johnson, M. C., & Plank, T. (2000). Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems, 1(12), 1-26.
    Kessel, R., Schmidt, M. W., Ulmer, P., & Pettke, T. (2005). Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437(7059), 724-727.
    Lai, Y. M., Liu, T. C., Chen, Y. M., & Lizuka, Y. (2014). Melting and crystallization of andesite from Chilungshan, Northern Taiwan An experimental Petrological study at atmospheric pressure. Quaternary International, 349, 221-231.
    Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., & Zanettin, B. (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, 193pp.
    Lee, H. Y., Chung, S. L., Ji, J., Qian, Q., Gallet, S., Lo, C. H., Lee, T. Y., & Zhang, Q. (2012). Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. Journal of Asian Earth Sciences, 53, 96-114.
    Li, J., Tang, S. H., Zhu, X. K., & Pan, C. X. (2016). Production and certification of the reference material GSB 04‐3258‐2015 as a 143Nd/144Nd isotope ratio reference. Geostandards and Geoanalytical Research, 41(2), 255-262.
    Liu, T. K., Chen, C. H., & Jiang, S. H. (1986). Fission-track study if igneous rocks from northern Taiwan. A report to the National Science Council, ROC
    Liu, T.K. (1987) Some new radiometric ages of volcanic rocks from Taiwan. (Abs). Hand book Annual Meeting, Geological Society of China, 62p.
    McCulloch, M. T., & Gamble, J. A. (1991). Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4), 358-374.
    Othman, D. B., White, W. M., & Patchett, J. (1989). The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94(1-2), 1-21.
    Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. Orogenic andesites and related rocks, 528-548. John Wiley and Son.
    Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composition of volcanic arc magmas. Annual review of Earth and planetary sciences, 23(1), 251-285.
    Plank, T. (2005). Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921-944.
    Rollinson, H. R. (1998). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, 1–352.
    Shao, W. Y., Chung, S. L., & Chen, W. S. (2014). Zircon U-Pb Age Determination of Volcanic Eruptions in Lutao and Lanyu in the Northern Luzon Magmatic Arc. Terrestrial Atmospheric and Oceanic Sciences., Vol. 25, No. 2, 148-187.
    Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4): 1012-1015.
    Stolper, E., & Newman, S. (1994). The role of water in the petrogenesis of Mariana trough magmas. Earth and Planetary Science Letters, 121(3-4), 293-325.
    Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
    Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Memoir of the Geological Society of China, 6, 21-34.
    Tatsumi, Y., Hamilton, D. L., & Nesbitt, R. W. (1986). Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29(1-4), 293-309.
    Taylor, S. R. (1969). Trace element chemistry of andesites and associated calc-alkalic rocks: Proceedings of the Andesite conference, Oregon Department of Geology and Mineral Industries. Bull., 65, 43-63.
    Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
    Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952.
    Teng, L. S., Chen, C. H., Wang, W. S., Liu, T. K., Juang, W. S., and Chen, J. C. (1992). Plate kinematic model for late Cenozoic arc magmatism in northern Taiwan. Journal of the Geological Society of China, 35, 1–18.
    Wan, Y., Ho, K., Liu, D., Zhou, H., Dong, C., & Ma, M. (2012). Micro-scale heterogeneity of andesite from Chilungshan, northern Taiwan: Evidence from melt inclusions, geochronology and Hf–O isotopes of zircons. Chemical Geology 328, 244-258.
    Wang, K. L., Chung, S. L., O'REILLY, S. Y., Sun, S. S., Shinjo, R., & Chen, C. H. (2004). Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology, 45(5), 975-1011.
    Wang, Y. (1953). Geology of the Chinkuashih and Chiufen districts, Taipeihsien, Taiwan. Acta Geologica Taiwanica, 5, 47-64.
    Wilson, M. (1989). Igneous Petrogenesis. Unwin Hyman, London, 446p.
    Yen, T. P. (1949). A note on the geology of the islets off chilung. Formosan Science, 3(1), 22–29.
    You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H., & Spivack, A. J. (1996). Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1-4), 41-52.
    王國龍 (2000) 台灣北部及外海晚上新世–第四紀火山岩的地球化學特性與岩石成因,國立台灣大學地質研究所博士論文,共169頁。
    何恭算、王士偉、戴昌鳳 (2009) 彭佳嶼、棉花嶼、花瓶嶼及基隆嶼之地質與地形資源。國家公園學報第19卷第4期,第46-64頁。
    宋聖榮 (2004) 大台北地區特殊地質災害調查與監測 - 地質和地球化學調查與監測 (1/4)。經濟部中央地質調查所報告,第93-03號,共86頁。
    宋聖榮 (2006) 大台北地區特殊地質災害調查與監測 - 地質和地球化學調查與監測 (3/4)。經濟部中央地質調查所報告,第95-03號,共235頁。
    宋聖榮 (2007) 大台北地區特殊地質災害調查與監測 - 地質和地球化學調查與監測 (4/4)。經濟部中央地質調查所報告,第96-03號,共241頁。
    宋聖榮 (2008) 大台北地區特殊地質災害調查與監測第二期 - 火山地質與火山活動調查與監測 (1/4)。經濟部中央地質調查所報告,第97-01號,共240頁。
    宋聖榮 (2009) 大台北地區特殊地質災害調查與監測第二期 - 火山地質與火山活動調查與監測 (2/4)。經濟部中央地質調查所報告,第98-01號,共316頁。
    李協長 (1998) 金瓜石地區岩漿與礦化作用之定年學研究及其大地構造運動之隱示,國立臺灣大學地質學研究所碩士論文,共61頁。
    李寄嵎、蔡榮浩、何孝恆、楊燦堯、鍾孫霖與陳正宏 (1997) 應用X光螢光分析儀從事岩石樣品之定量分析 (I) 主要元素。中國地質學會八十六年年會,第418-420頁。
    林毓潔、宋聖榮、陳中華 (2015) 大屯火山群土壤中石英的來源。科學發展,第515期,第30-36頁。
    高鈺涯、李獻華、李秋立、鍾孫霖 (2010) 二次離子質譜第四紀鋯石年代學:台灣金瓜石英安岩定年,地學前緣,第十七卷,第2期,第146-155頁。
    莊文星 (1999) 台灣之火山活動與火成岩。國立自然科學博物館,共300頁。
    莊文星、陳汝勤 (1989) 台灣北部火山岩之定年與地球化學研究,經濟部中央地質調查所彙刊,第5號,第31-66頁。
    郭盈宗 (2002) 基隆火山群安山岩中斑晶礦物之氧同位素研究,國立臺灣師範大學地球科學研究所碩士論文,共51頁。
    陳中華 (1989) 台灣新生代島弧火山岩之釹、鍶及氧同位素地球化學研究,國立臺灣大學理學院地質學研究所博士論文,共198頁。
    陳正宏 (1990) 台灣之火成岩:經濟部中央地質調查所出版,共137頁。
    黃鑑水、劉桓吉 (1988) 台灣地質圖說明書,第五號,雙溪幅,經濟部中央地質調查所出版,共51頁。
    賴昱銘 (2002) 基隆山安山岩之實驗岩石學研究及其石英成因之探討,國立臺灣師範大學地球科學研究所碩士論文,共98頁。
    鐘三雄 (2003) 基隆山安山岩體之富石英捕獲岩的岩象學與礦物化學初探,經濟部中央地質調查所彙刊,第16號,第1-31頁。
    鐘三雄 (2006) 基隆火山群安山岩體之基性-超基性捕獲岩的岩象學與礦物化學初步研究,經濟部中央地質調查所彙刊,第19號,第1-37頁。

    下載圖示
    QR CODE