研究生: |
湯友聖 Yu-Sheng Tang |
---|---|
論文名稱: |
發光二極體之螢光材料及其封裝特性分析 Investigations on the novel properties and packaging performance of phosphors in light-emitting diodes |
指導教授: |
胡淑芬
Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 發光二極體 、螢光粉 、LED封裝 |
英文關鍵詞: | Light emitting diodes, phosphor, LED package |
論文種類: | 學術論文 |
相關次數: | 點閱:403 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
原油價格於2008年六月份創下每桶140美元歷史新高價位,年初至今原油價格已飆漲40%,與去年同一時期相比正好整整漲了一倍。科學家並預期2008年夏天於溫室效應持續急遽惡化下,北極冰層有50%機率會全部融化流入大海,迫使低海拔城市面臨被淹沒之危機。於此,開發新型替代性能源與如何有效節約能源消耗是當今重要之研究課題,但當前替代性能源無法被有效地被利用來取代石油,故如何節約能源則成為最迫切之問題。固態照明,即為一有效之解決方案,如全中國大陸能以LED取代目前之照明設備,將省下一座三峽大壩全年之發電量。本文所探討之發光二極體於此照明革命中扮演著舉足輕重之角色。
1996年日亞化學Nakamura等人成功成長藍光發光二極體,並搭配黃色摻鈰之釔鋁石榴石(cerium doped yttrium aluminum garnet, YAG:Ce),成功發展白光LED。近年來於白光LED之發展日新月異,藍光晶片搭配YAG雖發光效率佳,但仍有藍光轉換效率不佳以及其白光演色性不高之問題。為規避日亞YAG專利之問題,矽酸鹽類發展亦受到重視,其發光效率與YAG屬伯仲之間,但近來研究發現其熱穩定性與抗濕性不佳。故本研究著重於UV激發之高色純度螢光粉,本研究發現鉀鍶磷酸鹽(KSrPO4)之熱穩定性及抗濕性佳,分別摻雜二價銪(Eu2+)及三價銪(Eu3+)產生藍光與紅光。再者,發現摻雜Eu2+之氯鋁酸鍶(Sr3(Al2O5)Cl2)光譜較YAG紅位移且半高寬大,故可解決演色性不高之問題。針對以上三種螢光粉進行材料結構、光譜特性與可靠度三大類之分析。
本研究之KSrPO4:Eu2+部分內容已發表於Appl. Phys. Lett. 90, 151108 (2007),研究其熱穩定性。Sr3(Al2O5)Cl2:Eu2+乃一新穎之螢光粉,並未有相關文獻報導,日前已提出專利申請。
The development of blue light-emitting diodes (LEDs) is hindered mainly due to the difficulties in the processing. After the initial discovery of white light generation by using GaN based LEDs in combination with a yellow phosphor (cerium doped yttrium aluminum garnet, YAG:Ce) by Nakamura et al. of Nichia, a great progress has been achieved in the development of white LEDs. The light emitting diodes has several advantages over the conventional light sources such as energy saving, eco friendly characteristics and so on. Due to the arising eco-awareness, various nations target to achieve the goal of “Kyoto Protocol” of decreasing the levels of carbon dioxide in next 3~4 years.
However, the above mentioned strategy of white light generation faces serious problems such as low conversion efficiency of blue LED and poor color rendering index. In this regard, silicate based phosphors have attracted much attention due to its superior luminescence properties in comparison with YAG. However the silicate based phosphors are also found to be thermally unstable. The present work is focused on near UV excitable phosphate based phosphors exhibiting high color saturation properties. We have observed that the luminescence of Eu2+ doped KSrPO4 is thermally more stable than YAG phosphor and not sensitive to moisture. The studies on Sr3(Al2O5)Cl2 doped with Eu2 were also performed which showed the peak broadening as well as red shift of the spectrum (PL) as compared to YAG. This provides the solution for problem of low color rendering index. The phosphor materials were characterized by various techniques such as X- ray diffraction analysis (XRD), scanning electron microscopy (SEM), photoluminescence (PL) measurements etc.
A part of the present studies related to the KSrPO4 phosphor and its thermal stability has been published in the journal, Appl. Phys. Lett. 90, 151108 (2007) and we have also filed a patent on UV excitable Sr3(Al2O5)Cl2:Eu2+ phosphors for application in LEDs.
1. S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 1997.
2. E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274-1278.
3. K. Takahashi, N. Hirosaki, R.-J. Xie, M. Harada, K.-i. Yoshimura and Y. Tomomura, Applied Physics Letters, 2007, 91, 091923-091923.
4. S. Muthu, F. J. P. Schuurmans and M. D. Pashley, IEEE J. Sel. Top. Quantum Electron, 8, 333-338.
5. T. Nishida, T. Ban and N. Kobayashi, Applied Physics Letters, 2003, 82, 3817-3819.
6. F. A. Ponce and D. P. Bour, Nature, 1997, 386, 351-359.
7. H. H. Robert Juza, Zeitschrift f anorganische und allgemeine Chemie, 1940, 244, 133-148.
8. H. G. Grimmeiss and H. Koelmans, Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie, 1959, 14, 264-271.
9. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Applied Physics Letters, 1986, 48, 353-355.
10. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Japanese Journal of Applied Physics Part 2-Letters, 1989, 28, L2112-L2114.
11. S. Nakamura, Japanese Journal of Applied Physics Part 2-Letters, 1991, 30, L1705-L1707.
12. S. Nakamura, T. Mukai and M. Senoh, Applied Physics Letters, 1994, 64, 1687-1689.
13. S. Nakamura, T. Mukai and M. Senoh, Journal of Applied Physics, 1994, 76, 8189-8191.
14. S. Nakamura, N. Senoh, N. Iwasa and S. I. Nagahama, Japanese Journal of Applied Physics Part 2-Letters, 1995, 34, L797-L799.
15. J. Han and A. V. Nurmikko, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 289-297.
16. N. K. T. Nishida, physica status solidi (a), 1999, 176, 45-48.
17. T. Nishida, H. Saito and N. Kobayashi, Applied Physics Letters, 2001, 79, 711-712.
18. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 310-320
19. W. Hao, Z. Xinmin, G. Chongfeng, X. Jian, W. Mingmei and S. Qiang, IEEE Photonics Technol. Lett., 2005, 17, 1160-1162.
20. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S. Qiang, Applied Physics Letters, 2006, 89, 71921-71923.
21. G. Menglian, C. Yibo, W. Jing and S. Qiang, J. Solid State Chem., 2007, 180, 1165-1170.
22. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S. Qiang, Mater. Res. Bull., 2008, 43, 907-911.
23. S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip and G. Blasse, Journal of Alloys and Compounds, 1996, 241, 75-81.
24. J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park and T. W. Kim, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43, 989-992.
25. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, Electrochemical and Solid State Letters, 2005, 8, H65-H67.
26. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, Journal of The Electrochemical Society, 2005, 152, H135-H137.
27. R. J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma and N. Kimura, Applied Physics Letters, 2006, 89.
28. R. J. Xie, N. Hirosaki, H. L. Li, Y. Q. Li and M. Mitomo, Journal of The Electrochemical Society, 2007, 154, J314-J319.
29. G. Bizarri and B. Moine, Journal of Luminescence, 2005, 113, 199-213.
30. Z. H. Zhang, Y. H. Wang, X. X. Li, Y. K. Du and W. J. Liu, Journal of Luminescence, 2007, 122-123, 1003-1005.
31. Y. H. Wang and Z. H. Zhang, Electrochemical and Solid-State Letters, 2005, 8, H97-H99.
32. X. Q. Piao, T. Horikawa, H. Hanzawa and K. Machida, Applied Physics Letters, 2006, 88, 161908-161910
33. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu and M. Mitomo, Chemistry of Materials, 2006, 18, 5578-5583.
34. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, Electrochemical and Solid State Letters, 2006, 9, H22-H25.
35. 徐敘瑢 與 蘇勉曾, 發光學與發光材料, 化學工業, 北京, 2004.
36. 郝允祥、陳遐舉 與 張保洲, 光度學, 北京師範大學出版社, 北京, 1988.
37. H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, Proceedings of the Royal Society of London Series B-Biological Sciences, 1983, 220, 115-130.
38. http://en.wikipedia.org/wiki/Image:PlanckianLocus.png
39. C. I. del'Eclairage, in Proc. CIE 11th Session, Paris, 1948.
40. R. C. Ropp, Luminescence and the Solid State, Elservier, Amsterdam, 2004.
41. G. H. Dieke and R. A. Satten, American Journal of Physics, 1970, 38, 399-400.
42. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley & Sons. Inc 1968.
43. D. A. Skoog, F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
44. J. Franck, Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 1926, 120, 144-156.
45. E. Condon, Physical Review, 1926, 28, 1182-1201.
46. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer, Berlin Heidelberg, 1994.
47. J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, Singapore, 2006.
48. W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, CRC Press, Boca Raton, 2006.
49. J. A. Deluca, Journal of Chemical Education, 1980, 57, 541-545.
50. S. Kuboniwa, H. Kawai and T. Hoshina, Japanese Journal of Applied Physics, 1980, 19, 1647-1653.
51. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, Cambridge, U.K., 2006.
52. Y. S. Fran and T. Y. Tseng, Journal of Physics D-Applied Physics, 1999, 32, 513-517.
53. K. Y. Jung, D. Y. Lee, Y. C. Kang and S. Bin Park, Korean Journal of Chemical Engineering, 2004, 21, 1072-1080.
54. W. N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro and K. Okuyama, Chemistry of Materials, 2007, 19, 1723-1730.
55. Ⅲ. William David Collins, M. R. Krames, G. J. Verhoecks and N. J. M. V. Leth, US Patent No.6576488 (Jun. 10, 2003)
56. 林群哲, 台灣大學碩士論文, 台北, 民96.
57. S. Erdei, F. W. Ainger, D. Ravichandran, W. B. White and L. E. Cross, Material Letter, 1997, 30, 389-393.
58. H. G. Jenkins, A. H. McKeag and P. W. Ranby, Journal of The Electrochemical Society, 1949, 96, 1-12.
59. A. A. Setlur, A. M. Srivastava, H. A. Comanzo and D. D. Doxsee, GE, 2004.
60. S. H. M. Poort, W. Janssen and G. Blasse, Journal of Alloys and Compounds, 1997, 260, 93-97.
61. K. S. Sohn, Y. Y. Choi, H. D. Park and H. G. Choi, Journal of The Electrochemical Society, 2000, 147, 2375-2379.
62. H. Lai, A. Bao, Y. M. Yang, Y. C. Tao, H. Yang, Y. Zhang and L. L. Han, Journal of Physical Chemistry C, 2008, 112, 282-286.
63. R. P. Rao, Journal of The Electrochemical Society, 2003, 150, H165-H171.
64. Z. C. Wu, J. Shi, J. Wang, M. L. Gong and Q. Su, J. Solid State Chemistry, 2006, 179, 2356-2360.
65. Y.-S. Tang, S.-F. Hu, C. C. Lin, N. C. Bagkar and R.-S. Liu, Applied Physics Letters, 2007, 90, 151108-151108-3.
66. T.-S. Chan, R.-S. Liu and I. Baginskiy, Chemistry of Materials, 2008, 20, 1215-1217.
67. Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim and E. Cho, Journal of Applied Physics, 2008, 103, 053501-053507.
68. J. S. Nagpal, S. V. Godbole, G. Varadharajan and A. G. Page, Radiation Protection Dosimetry, 1998, 80, 417-422.
69. P. Yang, G. Q. Yao and J. H. Lin, Inorganic Chemistry Communications, 2004, 7, 302-304.
70. X. Zhang and X. Liu, Journal of The Electrochemical Society, 1992, 139, 622-625.
71. A. Ellens, F. Jermann, F. Kummer, M. Ostertag and F. Zwaschka, 2003.
72. Z. G. Xia, Q. Li and J. Y. Sun, Material Letter, 2007, 61, 1885-1888.
73. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, 1991.
74. 吳泰伯 與 許樹恩, X-光繞射原理與材料結構分析, 國科會精儀中心, 台北, 民82.
75. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, Prentice Hall, New Jersey, 2001.
76. http://www.ndl.org.tw/ndl2006/department/nmlab/device_fesem.html
77. K. D. Mielenz, Optical Radiation Measurement, Academic Press, New York, 1982.
78. A. H. Kitai, Solid State Luminescence, Chapman & Hall, New York, 1993.
79. H. F. W. R. H. F. John C. de Mello, Advanced Materials, 1997, 9, 230-232.
80. A. P. M. L.-O. Palsson, Advanced Materials, 2002, 14, 757-758.
81. L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, Journal of Fluorescence, 2006, 16, 267-272.
82. P. Ganguly, N. Shah, M. Phadke, V. Ramaswamy and I. S. Mulla, Physical Review B, 1993, 47, 991.
83. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen and B. M. Cheng, Chemistry of Materials, 2007, 19, 3278-3285.
84. J. Yang, Z. W. Quan, D. Y. Kong, X. M. Liu and J. Lin, Crystal Growth & Design, 2007, 7, 730-735.
85. T. Hirai and Y. Kondo, J. Phys. Chem. C, 2007, 111, 168-174.
86. S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, J. Phys. Chem. C, 2007, 111, 13256-13260.
87. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe and M. Senna, Applied Physics Letters, 2000, 76, 1549-1551.
88. B. S. Tsai, Y. H. Chang and Y. C. Chen, Electrochemical and Solid State Letters, 2005, 8, H55-H57.
89. 蔡濱祥, 成功大學碩士論文, 台南, 民94.
90. F. Shi, J. Meng, Y. Ren and Q. Su, Journal of Physics and Chemistry of Solids, 1998, 59, 105-110.
91. B. R. Judd, Physical Review, 1962, 127, 750-&.
92. G. S. Ofelt, The Journal of Chemical Physics, 1962, 37, 511-520.
93. T. Miyakawa and D. L. Dexter, Physical Review B, 1970, 1, 2961-&.
94. M. Yu, J. Lin and J. Fang, Chem. Mater., 2005, 17, 1783-1791.
95. X. M. Liu, C. X. Li, Z. W. Quan, Z. Y. Cheng and J. Lin, Journal of Physical Chemistry C, 2007, 111, 16601-16607.
96. E. W. J. L. Oomen and A. M. A. van Dongen, Journal of Non-Crystalline Solids, 1989, 111, 205-213.
97. D. L. Dexter and J. H. Schulman, Journal of Chemical Physics, 1954, 22, 1063-1070.
98. G. Blasse, Philips Res. Rep., 1969, 24, 131.
99. G. Blasse, Progress in Solid State Chemistry, 1988, 18, 79-171.
100. D. R. Vij, Luminescence of solid, Plenum Press, New York, 1998.
101. M. Inokuti and F. Hirayama, The Journal of Chemical Physics, 1965, 43, 1978-1989.
102. Y. Y. Choi, K. S. Sohn, H. D. Park and S. Y. Choi, Journal of Materials Research, 2001, 16, 881-889.
103. Y. Nakanishi, A. Wakahara, H. Okada, A. Yoshida, T. Ohshima, H. Itoh, physica status solidi (c), 2003, 0, 461-464.
104. T. Fujiwara, A. Wakahara, Y. Nakanishi, A. Yoshida, T. Oshima T. Kamiya, physica status solidi (c), 2005, 2, 2805-2808.
105. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Chemical Physics Letters, 2003, 371, 1-6.
106. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Journal of Materials Chemistry, 2003, 13, 1202-1205.
107. U. Madhusoodanan, M. T. Jose and A. R. Lakshmanan, Radiation Measurements, 1999, 30, 65-72.
108. Z. Pei, Q. Su and J. Zhang, Journal of Alloys and Compounds, 1993, 198, 51-53.
109. I. Tle, P. Klis and V. Kronghauz, Journal of Luminescence, 1979, 20, 343-347.
110. A. Nag and T. R. N. Kutty, Journal of Materials Chemistry, 2004, 14, 1598-1604.
111. J. Y. Tsao, Circuits and Devices Magazine, IEEE, 2004, 20, 28-37.
112. 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科技圖書公司, 台北, 民92.
113. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi and H. L. Park, Solid State Communications, 2005, 133, 445-448.
114. Y. P. Varshini, Physica, 1967, 34, 149.
115. H. Yamamoto, in Phosphor global summit, Scottsdale, Arizona, USA, 2003.
116. M. Zachau, T. Fiedler and F. Jermann, in Phosphor global summit, Osram, San Diego, California USA, 2006.