簡易檢索 / 詳目顯示

研究生: 湯友聖
Yu-Sheng Tang
論文名稱: 發光二極體之螢光材料及其封裝特性分析
Investigations on the novel properties and packaging performance of phosphors in light-emitting diodes
指導教授: 胡淑芬
Hu, Shu-Fen
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 127
中文關鍵詞: 發光二極體螢光粉LED封裝
英文關鍵詞: Light emitting diodes, phosphor, LED package
論文種類: 學術論文
相關次數: 點閱:403下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原油價格於2008年六月份創下每桶140美元歷史新高價位,年初至今原油價格已飆漲40%,與去年同一時期相比正好整整漲了一倍。科學家並預期2008年夏天於溫室效應持續急遽惡化下,北極冰層有50%機率會全部融化流入大海,迫使低海拔城市面臨被淹沒之危機。於此,開發新型替代性能源與如何有效節約能源消耗是當今重要之研究課題,但當前替代性能源無法被有效地被利用來取代石油,故如何節約能源則成為最迫切之問題。固態照明,即為一有效之解決方案,如全中國大陸能以LED取代目前之照明設備,將省下一座三峽大壩全年之發電量。本文所探討之發光二極體於此照明革命中扮演著舉足輕重之角色。
    1996年日亞化學Nakamura等人成功成長藍光發光二極體,並搭配黃色摻鈰之釔鋁石榴石(cerium doped yttrium aluminum garnet, YAG:Ce),成功發展白光LED。近年來於白光LED之發展日新月異,藍光晶片搭配YAG雖發光效率佳,但仍有藍光轉換效率不佳以及其白光演色性不高之問題。為規避日亞YAG專利之問題,矽酸鹽類發展亦受到重視,其發光效率與YAG屬伯仲之間,但近來研究發現其熱穩定性與抗濕性不佳。故本研究著重於UV激發之高色純度螢光粉,本研究發現鉀鍶磷酸鹽(KSrPO4)之熱穩定性及抗濕性佳,分別摻雜二價銪(Eu2+)及三價銪(Eu3+)產生藍光與紅光。再者,發現摻雜Eu2+之氯鋁酸鍶(Sr3(Al2O5)Cl2)光譜較YAG紅位移且半高寬大,故可解決演色性不高之問題。針對以上三種螢光粉進行材料結構、光譜特性與可靠度三大類之分析。
    本研究之KSrPO4:Eu2+部分內容已發表於Appl. Phys. Lett. 90, 151108 (2007),研究其熱穩定性。Sr3(Al2O5)Cl2:Eu2+乃一新穎之螢光粉,並未有相關文獻報導,日前已提出專利申請。

    The development of blue light-emitting diodes (LEDs) is hindered mainly due to the difficulties in the processing. After the initial discovery of white light generation by using GaN based LEDs in combination with a yellow phosphor (cerium doped yttrium aluminum garnet, YAG:Ce) by Nakamura et al. of Nichia, a great progress has been achieved in the development of white LEDs. The light emitting diodes has several advantages over the conventional light sources such as energy saving, eco friendly characteristics and so on. Due to the arising eco-awareness, various nations target to achieve the goal of “Kyoto Protocol” of decreasing the levels of carbon dioxide in next 3~4 years.
    However, the above mentioned strategy of white light generation faces serious problems such as low conversion efficiency of blue LED and poor color rendering index. In this regard, silicate based phosphors have attracted much attention due to its superior luminescence properties in comparison with YAG. However the silicate based phosphors are also found to be thermally unstable. The present work is focused on near UV excitable phosphate based phosphors exhibiting high color saturation properties. We have observed that the luminescence of Eu2+ doped KSrPO4 is thermally more stable than YAG phosphor and not sensitive to moisture. The studies on Sr3(Al2O5)Cl2 doped with Eu2 were also performed which showed the peak broadening as well as red shift of the spectrum (PL) as compared to YAG. This provides the solution for problem of low color rendering index. The phosphor materials were characterized by various techniques such as X- ray diffraction analysis (XRD), scanning electron microscopy (SEM), photoluminescence (PL) measurements etc.
    A part of the present studies related to the KSrPO4 phosphor and its thermal stability has been published in the journal, Appl. Phys. Lett. 90, 151108 (2007) and we have also filed a patent on UV excitable Sr3(Al2O5)Cl2:Eu2+ phosphors for application in LEDs.

    總目錄 總目錄 I 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1.1 白光發光二極體之發展 1 1.2 紫外光發光二極體用之螢光粉介紹 2 1.2.1. 紫外光與藍光激發 2 1.2.2. 紫外光激發之螢光粉 4 1.3 色彩相關名詞介紹 5 1.3.1 顏色與CIE色度座標 5 1.3.2 色溫(Color Temperature) 6 1.3.3 演色性(Color Rendering Index) 7 1.4 螢光粉發光原理及理論介紹 8 1.4.1 螢光材料之設計 9 1.4.2 發光機制與影響發光效率之研究 14 1.5 螢光粉封裝技術介紹 20 1.5.1 刮刀法 21 1.5.2 噴塗法 22 1.5.3 電泳法 22 1.5.4 螢光粉塗布技術之展望 23 1.6 文獻與專利回顧 24 1.6.1 磷酸鹽 24 1.6.2 鹼鹵鋁酸鹽 25 1.7 研究動機與目的 26 第二章 樣品合成與儀器分析 27 2.1 化學藥品 27 2.2 樣品之製備 28 2.2.1 固態反應法 28 2.2.2 實驗流程 29 2.3樣品鑑定 30 2.3.1 粉末X-光繞射儀(X-ray diffraction; XRD) 31 2.3.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 37 2.3.3 光激發光譜儀(Photoluminescence; PL) 38 2.3.4螢光生命週期儀(Fluorescence Lifetime Measurement) 40 2.3.5 熱光衰(Thermal Quenching) 41 2.3.6 量子效率(Quantum Efficiency) 42 第三章 結果與討論 44 3.1 KSrPO4:Eu特性分析 45 3.1.1 KSrPO4:Eu材料結構分析 46 3.1.2 KSrPO4:Eu光譜特性分析 54 3.1.3 KSrPO4:Eu可靠度分析 68 3.2 Sr3(Al2O5)Cl2:Eu特性分析 84 3.2.1 Sr3(Al2O5)Cl2:Eu2+材料結構分析 84 3.2.2 Sr3(Al2O5)Cl2:Eu光譜特性分析 89 3.2.3 Sr3(Al2O5)Cl2:Eu可靠度分析 93 3.3 白光LED之特性分析 100 第四章 結論 104 參考文獻 106 圖目錄 圖1. 1 三大類產生白光之方式,分為雙色、三色及四色。每一類方式又分為僅用LED之混白光方式或LED搭配螢光粉兩種 1 圖1. 2能階與化學鍵長圖。搭配可見光能階範疇可清楚得知不同 4 圖1. 3此圖為白晝與夜間對於不同波長光之敏感程度,右上圖為桿狀與錐狀細胞於光譜上之敏感波段 6 圖1. 4 CIE-1931色品圖之黑體輻射曲線 7 圖1. 5 CIE規定之八種試驗色色卡 8 圖1. 6 主體晶格之陽離子分布圖 10 圖1. 7 主體晶格中不具光學活性陰離子團分布圖 10 圖1. 8 主體晶格中具光學活性陰離子團分布圖 11 圖1. 9 活化劑之陽離子團分布圖 11 圖1. 10 三價稀土離子之能階圖 13 圖1. 11 抑制劑之陽離子團分布圖 14 圖1. 12 發光機制示意圖,螢光與磷光之轉換機制 15 圖1. 13 法蘭克-康頓原理之位能曲線示意圖 16 圖1. 14 Stoke shift光譜示意圖 17 圖1. 15活化劑濃度與發光強度之關係圖 18 圖1. 16量子效率示意圖 (a) LED與(b)螢光粉 20 圖1. 17螢光粉塗布技術-刮刀法 21 圖1. 18螢光粉塗布技術-噴塗法 22 圖1. 19螢光粉塗布技術-電泳法 23 圖2. 1利用固態反應法製作KH2PO4螢光粉之流程 30 圖2. 2利用固態反應法製作Sr3(Al2O5)Cl2螢光粉之流程 30 圖2. 3原子間電子傳遞,箭號為放光之過程 33 圖2. 4 X-光光譜,包含連續輻射與特徵輻射 33 圖2. 5 X-光粉末繞射儀(PANalytical X’Pert PRO XRD) 37 圖2. 6掃描式電子顯微鏡(NDL):HITACHI S-4000 38 圖2. 7 FluoroMax-3光譜儀構造 40 圖2. 8量測熱淬滅光譜儀架構 42 圖2. 9量子效率設備之F3018積分球 43 圖2. 10量子效率量測方式示意圖 44 圖3. 1 KSrPO4晶體結構圖,磷與氧形成四面體配位 48 圖3. 2 KSr1-xPO4:Eux2+(x = 0.001~0.01)XRD圖譜 49 圖3. 3 KSr1-xPO4:Eux3+(x = 0.003~0.07)XRD圖譜 50 圖3. 4 KSr0.995PO4:Eu0.0052+X-光粉末繞射結構精算圖 51 圖3. 5 KSr0.97PO4:Eu0.033+X-光粉末繞射結構精算圖 52 圖3. 6 (a)~(c)為KSrPO4 :Eu2+之SEM圖,(a)放大倍率為100x,scale bar為200 μm,(b)放大倍率為1kx,scale bar為20 μm,(c) 放大倍率為6kx,scale bar為5 μm ;(d)~(f)為KSrPO4 :Eu3+之SEM圖,(d)放大倍率為100x,scale bar為200 μm,(e)放大倍率為1kx,scale bar為20 μm,(f) 放大倍率為6kx,scale bar為5 μm 53 圖3. 7 KSr1-xPO4:Eux2+ (x =0.001~0.01)之PL光譜圖 55 圖3. 8 KSr0.97PO4:Eu0.032+之PLE&PL光譜圖 57 圖3. 9 KSrPO4中不同摻雜濃度Eu3+離子之非對稱比 58 圖3. 10 濃度淬滅效應之示意圖 59 圖3. 11 KSrPO4:Eu2+之濃度淬滅效應 61 圖3. 12 KSrPO4:Eu3+之濃度淬滅效應與量子效率 62 圖3. 13 KSrPO4:Eux2+(x = 0.001~0.01)發光強度衰減曲線圖 64 圖3. 14 KSrPO4:Eux2+(x = 0.001~0.01)衰減時間圖 64 圖3. 15 KSrPO4:Eu0.033+衰減曲線圖 65 圖3. 16 CIE座標圖。藍色區塊中×代表KSrPO4:Eu2+之藍色螢光粉,*代表商用之BAM螢光粉;紅色區塊中×代表KSrPO4:Eu3+之紅色螢光粉,*代表商用之Y2O3:Eu3+螢光粉 66 圖3. 17 KSrPO4:Eu0.033+隨濃度改變之光激發光譜圖 68 圖3. 18基態與激發態能階之結構座標圖 70 圖3. 19 不同溫度之激發態之電子能階圖 70 圖3. 20 非輻射能量轉移之基態與激發態能階之結構圖 71 圖3. 21 KSrPO4:Eu0.0052+與商用YAG螢光粉於不同溫度之相對強度比較圖。內插圖為KSrPO4:Eu0.0052+於不同溫度之光激發光譜圖 73 圖3. 22 KSrPO4:Eu0.033+與商用Y2O3:Eu3+螢光粉溫度依存度比較圖 73 圖3. 23 KSrPO4:Eu0.0052+於下低溫之光激發光譜圖 75 圖3. 24 KSrPO4:Eu0.033+於下低溫之光激發光譜圖 75 圖3. 25 KSrPO4:Eu0.0052+ & Eu0.033+活化能示意圖 76 圖3. 26 不同螢光粉溶於水中之導電度與時間關係圖 78 圖3. 27 KSrPO4原始樣品與實驗過後樣品之XRD圖譜分析 79 圖3. 28 KSrPO4原始樣品與實驗過後樣品之PL光譜圖 79 圖3. 29 KSrPO4 :Eu2+經過濕度測試後之SEM圖,(a)放大倍率為1kx,scale bar為20 μm,(b) 放大倍率為6kx,scale bar為5 μm 80 圖3. 30 KSrPO4 :Eu3+經過濕度測試後之SEM圖,(a)放大倍率為1kx,scale bar為20 μm,(b) 放大倍率為6kx,scale bar為5 μm 80 圖3. 31 KSrPO4 :Eu2+搭配400 nm UV-LED晶片之封裝結果 82 圖3. 32 通以不同電流(20 mA~60 mA)驅動KSrPO4 :Eu2+封裝之LED發光光譜圖 83 圖3. 33 Sr3(Al2O5)Cl2晶體結構圖,鋁與氧形成四面體配位 86 圖3. 34 Sr3-x(Al2O5)Cl2:Eux2+(x = 0.05~0.20)XRD圖譜 86 圖3. 35 Sr2.85(Al2O5)Cl2:Eu0.152+X-光粉末繞射結構精算圖 87 圖3. 36 (a)~(c)為Sr3(Al2O5)Cl2:Eu2+之SEM圖,(a)放大倍率為100x,scale bar為200 μm,(b)放大倍率為1kx,scale bar為20 μm,(c) 放大倍率為6kx,scale bar為5 μm 88 圖3. 37 Sr3-x(Al2O5)Cl2:Eux2+之PLE&PL光譜圖 90 圖3. 38 Sr2.85(Al2O5)Cl2與YAG之光激發比較圖 90 圖3. 39 Sr2.85(Al2O5)Cl2:Eu2+與YAG之CIE座標圖 91 圖3. 40 Sr3(Al2O5)Cl2:Eu2+濃度淬滅關係圖 92 圖3. 41 Sr2.85(Al2O5)Cl2:Eu0.152+衰減曲線圖 93 圖3. 42 Sr2.85(Al2O5)Cl2:Eu0.152+與商用YAG及Silicate螢光粉於不同溫度之相對強度比較圖 94 圖3. 43 Sr2.85(Al2O5)Cl2:Eu0.152+對溫度之回復性圖 94 圖3. 44 Sr2.85(Al2O5)Cl2:Eu0.152+於下低溫之光激發光譜圖 95 圖3. 45 Sr2.85(Al2O5)Cl2:Eu0.152+之升溫與下低溫不同溫度點之光譜於CIE座標上位移圖,黑色箭頭為從室溫升至300 oC,白色箭頭為從室溫降至100 K 96 圖3. 46 Sr2.85(Al2O5)Cl2:Eu0.152+活化能示意圖 97 圖3. 47Sr2.85(Al2O5)Cl2:Eu0.152+搭配400 nm UV-LED晶片之封裝結果 98 圖3. 48 Sr2.85(Al2O5)Cl2:Eu0.152+搭配400 nm UV-LED晶片之封裝結果 99 圖3. 49 KSrPO4 :Eu2+(藍色)、Sr2.85(Al2O5)Cl2:Eu0.152+(黃色)與(Ba, Sr)2SiO4 :Eu2+(綠色)搭配400 nm UV-LED晶片之封裝結果 101 圖3. 50 通以不同電流(20 mA~60 mA)驅動KSrPO4 :Eu2+、Sr2.85(Al2O5)Cl2:Eu0.152+與(Ba, Sr)2SiO4 :Eu2+搭配400 nm UV-LED晶片封裝之白光LED放光光譜圖 102 圖3. 51通以不同電流(20 mA~60 mA)驅動搭配400 nm UV-LED晶片封裝之白光LED之色度座標上之位移情形 103 表目錄 表2. 2 本研究使用藥品清單 27 表3. 1 KSr0.995PO4:Eu0.0052+之各項原子結構參數 51 表3. 2 KSr0.97PO4:Eu0.033+之各項原子結構參數 52 表3. 3 KSrPO4:Eu3+之吸收率與量子效率 62 表3. 4 KSrPO4 :Eu2+搭配400 nm UV-LED晶片之封裝數據一覽表 82 表3. 5不同電流驅動KSrPO4 :Eu2+封裝之LED數據一覽表 83 表3. 6 Sr2.85(Al2O5)Cl2:Eu0.152+之各項原子結構參數 87 表3. 7 Sr3(Al2O5)Cl2:Eu2+搭配400 nm UV-LED晶片之封裝數據一覽表 98 表3. 8 不同電流驅動Sr3(Al2O5)Cl2:Eu2+封裝之LED數據一覽表 99 表3. 9 KSrPO4 :Eu2+、Sr2.85(Al2O5)Cl2:Eu0.152+與(Ba, Sr)2SiO4 :Eu2+搭配400 nm UV-LED晶片之封裝數據一覽表 101 表3. 10 不同電流驅動Sr3(Al2O5)Cl2:Eu2+封裝之LED數據一覽表 102

    1. S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer, Berlin, 1997.
    2. E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274-1278.
    3. K. Takahashi, N. Hirosaki, R.-J. Xie, M. Harada, K.-i. Yoshimura and Y. Tomomura, Applied Physics Letters, 2007, 91, 091923-091923.
    4. S. Muthu, F. J. P. Schuurmans and M. D. Pashley, IEEE J. Sel. Top. Quantum Electron, 8, 333-338.
    5. T. Nishida, T. Ban and N. Kobayashi, Applied Physics Letters, 2003, 82, 3817-3819.
    6. F. A. Ponce and D. P. Bour, Nature, 1997, 386, 351-359.
    7. H. H. Robert Juza, Zeitschrift f anorganische und allgemeine Chemie, 1940, 244, 133-148.
    8. H. G. Grimmeiss and H. Koelmans, Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie, 1959, 14, 264-271.
    9. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Applied Physics Letters, 1986, 48, 353-355.
    10. H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Japanese Journal of Applied Physics Part 2-Letters, 1989, 28, L2112-L2114.
    11. S. Nakamura, Japanese Journal of Applied Physics Part 2-Letters, 1991, 30, L1705-L1707.
    12. S. Nakamura, T. Mukai and M. Senoh, Applied Physics Letters, 1994, 64, 1687-1689.
    13. S. Nakamura, T. Mukai and M. Senoh, Journal of Applied Physics, 1994, 76, 8189-8191.
    14. S. Nakamura, N. Senoh, N. Iwasa and S. I. Nagahama, Japanese Journal of Applied Physics Part 2-Letters, 1995, 34, L797-L799.
    15. J. Han and A. V. Nurmikko, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 289-297.
    16. N. K. T. Nishida, physica status solidi (a), 1999, 176, 45-48.
    17. T. Nishida, H. Saito and N. Kobayashi, Applied Physics Letters, 2001, 79, 711-712.
    18. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, IEEE J. Sel. Top. Quantum Electron., 2002, 8, 310-320
    19. W. Hao, Z. Xinmin, G. Chongfeng, X. Jian, W. Mingmei and S. Qiang, IEEE Photonics Technol. Lett., 2005, 17, 1160-1162.
    20. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S. Qiang, Applied Physics Letters, 2006, 89, 71921-71923.
    21. G. Menglian, C. Yibo, W. Jing and S. Qiang, J. Solid State Chem., 2007, 180, 1165-1170.
    22. W. Zhengliang, L. Hongbin, W. Jing, G. Menglian and S. Qiang, Mater. Res. Bull., 2008, 43, 907-911.
    23. S. H. M. Poort, H. M. Reijnhoudt, H. O. T. van der Kuip and G. Blasse, Journal of Alloys and Compounds, 1996, 241, 75-81.
    24. J. S. Kim, J. Y. Kang, P. E. Jeon, J. C. Choi, H. L. Park and T. W. Kim, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43, 989-992.
    25. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, Electrochemical and Solid State Letters, 2005, 8, H65-H67.
    26. J. S. Kim, Y. H. Park, J. C. Choi and H. L. Park, Journal of The Electrochemical Society, 2005, 152, H135-H137.
    27. R. J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma and N. Kimura, Applied Physics Letters, 2006, 89.
    28. R. J. Xie, N. Hirosaki, H. L. Li, Y. Q. Li and M. Mitomo, Journal of The Electrochemical Society, 2007, 154, J314-J319.
    29. G. Bizarri and B. Moine, Journal of Luminescence, 2005, 113, 199-213.
    30. Z. H. Zhang, Y. H. Wang, X. X. Li, Y. K. Du and W. J. Liu, Journal of Luminescence, 2007, 122-123, 1003-1005.
    31. Y. H. Wang and Z. H. Zhang, Electrochemical and Solid-State Letters, 2005, 8, H97-H99.
    32. X. Q. Piao, T. Horikawa, H. Hanzawa and K. Machida, Applied Physics Letters, 2006, 88, 161908-161910
    33. R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu and M. Mitomo, Chemistry of Materials, 2006, 18, 5578-5583.
    34. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, Electrochemical and Solid State Letters, 2006, 9, H22-H25.
    35. 徐敘瑢 與 蘇勉曾, 發光學與發光材料, 化學工業, 北京, 2004.
    36. 郝允祥、陳遐舉 與 張保洲, 光度學, 北京師範大學出版社, 北京, 1988.
    37. H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, Proceedings of the Royal Society of London Series B-Biological Sciences, 1983, 220, 115-130.
    38. http://en.wikipedia.org/wiki/Image:PlanckianLocus.png
    39. C. I. del'Eclairage, in Proc. CIE 11th Session, Paris, 1948.
    40. R. C. Ropp, Luminescence and the Solid State, Elservier, Amsterdam, 2004.
    41. G. H. Dieke and R. A. Satten, American Journal of Physics, 1970, 38, 399-400.
    42. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, John Wiley & Sons. Inc 1968.
    43. D. A. Skoog, F. J. Holler and T. A. Niemen, Principles of instrumental analysis, Harcourt Brace & Company, Orlando, 1998.
    44. J. Franck, Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 1926, 120, 144-156.
    45. E. Condon, Physical Review, 1926, 28, 1182-1201.
    46. G. Blasse and B. C. Grabmaier, Luminescent Materials, Springer, Berlin Heidelberg, 1994.
    47. J. R. Lakowicz, Principle of Fluorescence Spectroscopy, Springer, Singapore, 2006.
    48. W. M. Yen, S. Shionoya and H. Yamamoto, Phosphor handbook, CRC Press, Boca Raton, 2006.
    49. J. A. Deluca, Journal of Chemical Education, 1980, 57, 541-545.
    50. S. Kuboniwa, H. Kawai and T. Hoshina, Japanese Journal of Applied Physics, 1980, 19, 1647-1653.
    51. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press, Cambridge, U.K., 2006.
    52. Y. S. Fran and T. Y. Tseng, Journal of Physics D-Applied Physics, 1999, 32, 513-517.
    53. K. Y. Jung, D. Y. Lee, Y. C. Kang and S. Bin Park, Korean Journal of Chemical Engineering, 2004, 21, 1072-1080.
    54. W. N. Wang, W. Widiyastuti, T. Ogi, I. W. Lenggoro and K. Okuyama, Chemistry of Materials, 2007, 19, 1723-1730.
    55. Ⅲ. William David Collins, M. R. Krames, G. J. Verhoecks and N. J. M. V. Leth, US Patent No.6576488 (Jun. 10, 2003)
    56. 林群哲, 台灣大學碩士論文, 台北, 民96.
    57. S. Erdei, F. W. Ainger, D. Ravichandran, W. B. White and L. E. Cross, Material Letter, 1997, 30, 389-393.
    58. H. G. Jenkins, A. H. McKeag and P. W. Ranby, Journal of The Electrochemical Society, 1949, 96, 1-12.
    59. A. A. Setlur, A. M. Srivastava, H. A. Comanzo and D. D. Doxsee, GE, 2004.
    60. S. H. M. Poort, W. Janssen and G. Blasse, Journal of Alloys and Compounds, 1997, 260, 93-97.
    61. K. S. Sohn, Y. Y. Choi, H. D. Park and H. G. Choi, Journal of The Electrochemical Society, 2000, 147, 2375-2379.
    62. H. Lai, A. Bao, Y. M. Yang, Y. C. Tao, H. Yang, Y. Zhang and L. L. Han, Journal of Physical Chemistry C, 2008, 112, 282-286.
    63. R. P. Rao, Journal of The Electrochemical Society, 2003, 150, H165-H171.
    64. Z. C. Wu, J. Shi, J. Wang, M. L. Gong and Q. Su, J. Solid State Chemistry, 2006, 179, 2356-2360.
    65. Y.-S. Tang, S.-F. Hu, C. C. Lin, N. C. Bagkar and R.-S. Liu, Applied Physics Letters, 2007, 90, 151108-151108-3.
    66. T.-S. Chan, R.-S. Liu and I. Baginskiy, Chemistry of Materials, 2008, 20, 1215-1217.
    67. Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim and E. Cho, Journal of Applied Physics, 2008, 103, 053501-053507.
    68. J. S. Nagpal, S. V. Godbole, G. Varadharajan and A. G. Page, Radiation Protection Dosimetry, 1998, 80, 417-422.
    69. P. Yang, G. Q. Yao and J. H. Lin, Inorganic Chemistry Communications, 2004, 7, 302-304.
    70. X. Zhang and X. Liu, Journal of The Electrochemical Society, 1992, 139, 622-625.
    71. A. Ellens, F. Jermann, F. Kummer, M. Ostertag and F. Zwaschka, 2003.
    72. Z. G. Xia, Q. Li and J. Y. Sun, Material Letter, 2007, 61, 1885-1888.
    73. D. R. Lide, Handbook of Chemistry and Physics, CRC Press, 1991.
    74. 吳泰伯 與 許樹恩, X-光繞射原理與材料結構分析, 國科會精儀中心, 台北, 民82.
    75. B. D. Cullity and S. R. Stock, Elements of X-ray diffraction, Prentice Hall, New Jersey, 2001.
    76. http://www.ndl.org.tw/ndl2006/department/nmlab/device_fesem.html
    77. K. D. Mielenz, Optical Radiation Measurement, Academic Press, New York, 1982.
    78. A. H. Kitai, Solid State Luminescence, Chapman & Hall, New York, 1993.
    79. H. F. W. R. H. F. John C. de Mello, Advanced Materials, 1997, 9, 230-232.
    80. A. P. M. L.-O. Palsson, Advanced Materials, 2002, 14, 757-758.
    81. L. Porres, A. Holland, L. O. Palsson, A. P. Monkman, C. Kemp and A. Beeby, Journal of Fluorescence, 2006, 16, 267-272.
    82. P. Ganguly, N. Shah, M. Phadke, V. Ramaswamy and I. S. Mulla, Physical Review B, 1993, 47, 991.
    83. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen and B. M. Cheng, Chemistry of Materials, 2007, 19, 3278-3285.
    84. J. Yang, Z. W. Quan, D. Y. Kong, X. M. Liu and J. Lin, Crystal Growth & Design, 2007, 7, 730-735.
    85. T. Hirai and Y. Kondo, J. Phys. Chem. C, 2007, 111, 168-174.
    86. S. Yan, J. Zhang, X. Zhang, S. Lu, X. Ren, Z. Nie and X. Wang, J. Phys. Chem. C, 2007, 111, 13256-13260.
    87. T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe and M. Senna, Applied Physics Letters, 2000, 76, 1549-1551.
    88. B. S. Tsai, Y. H. Chang and Y. C. Chen, Electrochemical and Solid State Letters, 2005, 8, H55-H57.
    89. 蔡濱祥, 成功大學碩士論文, 台南, 民94.
    90. F. Shi, J. Meng, Y. Ren and Q. Su, Journal of Physics and Chemistry of Solids, 1998, 59, 105-110.
    91. B. R. Judd, Physical Review, 1962, 127, 750-&.
    92. G. S. Ofelt, The Journal of Chemical Physics, 1962, 37, 511-520.
    93. T. Miyakawa and D. L. Dexter, Physical Review B, 1970, 1, 2961-&.
    94. M. Yu, J. Lin and J. Fang, Chem. Mater., 2005, 17, 1783-1791.
    95. X. M. Liu, C. X. Li, Z. W. Quan, Z. Y. Cheng and J. Lin, Journal of Physical Chemistry C, 2007, 111, 16601-16607.
    96. E. W. J. L. Oomen and A. M. A. van Dongen, Journal of Non-Crystalline Solids, 1989, 111, 205-213.
    97. D. L. Dexter and J. H. Schulman, Journal of Chemical Physics, 1954, 22, 1063-1070.
    98. G. Blasse, Philips Res. Rep., 1969, 24, 131.
    99. G. Blasse, Progress in Solid State Chemistry, 1988, 18, 79-171.
    100. D. R. Vij, Luminescence of solid, Plenum Press, New York, 1998.
    101. M. Inokuti and F. Hirayama, The Journal of Chemical Physics, 1965, 43, 1978-1989.
    102. Y. Y. Choi, K. S. Sohn, H. D. Park and S. Y. Choi, Journal of Materials Research, 2001, 16, 881-889.
    103. Y. Nakanishi, A. Wakahara, H. Okada, A. Yoshida, T. Ohshima, H. Itoh, physica status solidi (c), 2003, 0, 461-464.
    104. T. Fujiwara, A. Wakahara, Y. Nakanishi, A. Yoshida, T. Oshima T. Kamiya, physica status solidi (c), 2005, 2, 2805-2808.
    105. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Chemical Physics Letters, 2003, 371, 1-6.
    106. M. Y. Peng, Z. W. Pei, G. Y. Hong and Q. Su, Journal of Materials Chemistry, 2003, 13, 1202-1205.
    107. U. Madhusoodanan, M. T. Jose and A. R. Lakshmanan, Radiation Measurements, 1999, 30, 65-72.
    108. Z. Pei, Q. Su and J. Zhang, Journal of Alloys and Compounds, 1993, 198, 51-53.
    109. I. Tle, P. Klis and V. Kronghauz, Journal of Luminescence, 1979, 20, 343-347.
    110. A. Nag and T. R. N. Kutty, Journal of Materials Chemistry, 2004, 14, 1598-1604.
    111. J. Y. Tsao, Circuits and Devices Magazine, IEEE, 2004, 20, 28-37.
    112. 劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹, 全華科技圖書公司, 台北, 民92.
    113. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi and H. L. Park, Solid State Communications, 2005, 133, 445-448.
    114. Y. P. Varshini, Physica, 1967, 34, 149.
    115. H. Yamamoto, in Phosphor global summit, Scottsdale, Arizona, USA, 2003.
    116. M. Zachau, T. Fiedler and F. Jermann, in Phosphor global summit, Osram, San Diego, California USA, 2006.

    下載圖示
    QR CODE