研究生: |
張明宗 |
---|---|
論文名稱: |
電化學沉積技術應用於微型熱電致冷器之研製 Development of thermoelectric micro-cooler using a electrochemical deposition technique |
指導教授: |
楊啟榮
Yang, Chii-Rong 程金保 Cheng, Chin-Pao |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 碲鉍合金 、銻鉍合金 、熱電材料 、致冷晶片 、電化學技術 |
英文關鍵詞: | bismuth telluride, antimony telluride, thermoelectric, cooling chip, electrochemical technique |
論文種類: | 學術論文 |
相關次數: | 點閱:427 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子及光電元件產品封裝縮小化及高發熱密度的趨勢,高效率的冷卻及精確控溫技術越來越重要。微熱電元件具有體積小、無污染、控溫效率高等優點,正好符合此一趨勢。由於微電子及微機電技術的進步,使得熱電元件的設計及製程技術而有了新的發展及應用,而微小化的熱電元件更適合應用於微小的電子元件散熱,延長使用壽命及提高元件穩定度。
本研究利用電化學沉積的技術,電鍍n-type熱電材料Bi2Te3及p-type熱電材料Sb2Te3的合金電鍍,研製微型熱電致冷晶片,並探討不同金屬基板上其熱電材料的表面形貌,並找出較佳的電鍍參數,以比較在各個參數不同的情形下之改變,可達到材料之最佳匹配。利用黃光微影的製程分別將上下金屬電極及p-type及n-type腳位做連結,以完成製程整合。
本實驗以濃度為7.5 × 10-3 M 的Bi2O3與10 ×10-3 M 的TeO2,成功鍍出了緻密性良好的n-type Bi2Te3熱電材料,其鍍率約為6 um/hr,其成分為Bi約為45 %,Te成分約為55 %,故後續將再調變濃度,期望達到Bi 40 %及Te 60 %p-type Sb2Te3熱電材料已接近材料所需之成分比率,Sb成分約為42 %,Te成分約為58 %,但對於其表面粗操度仍需進ㄧ步的改善。
而由實驗結果做一實際運作,並對微熱電製冷晶片做特性量測,包括了XRD、SEM、Seebeck 係數、熱傳導係數以及電阻值的量測。
With the electronic and optoelectronic components products and packaging technology grow up, and high fever of electronic products, high-efficiency cooling and precise temperature control technology is increasingly important.
Micro thermoelectric element is small, clean, efficient, high temperature control device. By using its cooling application, we use costless electrochemical technique to fabricate micro thermoelectric cooler, in order to solution thermal problem of electronic products.
We use Bi2O3, Sb2O3 and TeO2 metal oxide powder dissolve in diluted HNO3 for preparing electrolyte. And, we use different metal based plate to electroplate thermoelectric materials, in order to find better based for electroplating n-type junction Bi2Te3 and p-type junction Sb2Te3.
We find a better electroplating conditions to electroplate Bi2Te3 material.The concentration of the metal powder choose 7.5 × 10-3 M Bi2O3 and 10 × 10-3 M TeO2 to electroplate a smooth morphology junction, and the composition of Bi near 45 % and Te 55 %, the growth rate is about 6 um/hr. The other thermoelectric material Sb2Te3 can be found that the composition of Sb is neat 42 %, and Te 58 %, it is very close the proportional composition. But, the smoothness of Sb2Te3 is needed to be improve.
1. 徐文祥, “微機電系統技術與應用”, 精密儀器發展中心,第一章, pp.4 (2003).
2. C. Tsai, R. L. Chen, C. C. L. Chen, J. Denatale, “Micromachined stack component for miniaturethermoacoustic refrigerator”, IEEE, (2002), pp. 149-151.
3. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, K. E. Goodson, “Modeling of two-phase microchannel heat sinks for VISI chips”, IEEE, (2001), pp. 422-426.
4. S. Wu, J. Mai, Y. C. Tai, C. M. Ho, “Micro heat exchanger using MEMS impinging jets”, IEEE, (1999), pp. 171-176.
5. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, C. C. Hsieh, “MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics.”, Experimental thermal and fluid science, (2001), pp. 231-242.
6. “Thermoelectrics handbook micro to nano”, D. M. Rowe, (2006)
7. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J. L. Schanen, “Thermal analysis of thermal spreaders used in power electronics cooling.”, IEEE, (2002), pp. 216-221.
8. J. Kim, E. Golliher, “Steady state model of a micro loop heat pipe.”, IEEE, (2002), pp. 137-144.
9. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, D. Wolf, “Testing of controller for a hybrid capillary pumped loop thermal control system.”, IEEE, (1989), pp. 69-74.
10. D. J. Yao, “In-plane MEMS thermoelectric microcooler”, Ph. D. dissertation of UCLA, USA, (2001).
11. Microsoft, http://www.microsoft.com.
12. http://electronics-cooling.com/
13. W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, L. Weber, “Materials of LIGA technology”, Microsystem Technologies, Vol. 5, No. 3, (1999), pp.105-112.
14. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003) pp. 141-319.
15. “Handbook of thermoelectrics” ,Alexander Borshchevsky, (1995), pp.83-97.
16. O. Yamashita, S. Tomiyoshi, K. Makita, “Bismuth telluride compounds with high thermoelectric figures of merit”, Journal of Applied Physics, Vol. 93, Issue 1, January 1, (2003), pp. 368-374.
17. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, C. W. Hwang, “Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr”, Journal of Materials Science Vol. 33, (1998), pp. 5595 – 5600.
18. http://people.deas.harvard.edu/
19. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, E. I. Smirnova, “Selenium-doped Sb2Te3-Bi2Te3 crystals”, Inorganic Materials Vol. 33, (1997), pp. 558-561
20. L. D. Ivanova,Y. V. Granatkina,N. V. Polikarpova, Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system”, Inorganic Materials, Vol. 31, (1995), pp.678-681.
21. L. D. Ivanova, S. A. Brovikova, H. Sussmann, P. Reinshaus, “Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 singal-crystals”, Inorganic Materials, Vol. 31, (1995), pp. 682-686.
22. http://www.dynacer.com/
23. D. B. Hyun, J. S. Hwang, J. D. Shim, T. S. Oh, “Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method”, Journal of Materials Science Vol. 36, Number 5, (2001), pp. 1285-1291.
24. B. Wölfing, C. Kloc1, J. Teubner, E. Bucher, “High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity”, Physical Review Letters, Vol, 86, Issue 19, (2001), pp. 4350-4353.
25. http://www.hardwaresource.com
26. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit “, Nature Vol. 413, (2001), pp. 597-602.
27. J. Seo, K. Park, D. Lee, C. Lee, “Microstructure and Thermoelectric Properties of P-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion”, Vol. 38, Issue 3, (1998), pp. 477-484.
28. L. M. Goncalves, C. Couto, P. Alpuim , D.M. Rowe, J. H. Correia, ”Thermoelectric microstructures of Bi2Te3/Sb2Te3 for a self-calibrated micro-pyrometer”, Sensors and Actuators A 130-131, (2006), pp. 346-351.
29. L. W. da Silva, M. Kaviany, C. Uherc, “Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems”, Journal of Applied Physics, Vol. 97, (2005), pp. 114903-1.
30. H. Böttner, J. Nurnus, A. Gavrikov, G. Kühner, M. Jägle, C. Künzel, D. Eberhard, G. Plescher, A. Schubert, K. H. Schlereth, “ New thermoelectric components using microsystem technologies”, Journal of Microeletromechanical Systems, Vol. 13, No. 3, (2004), pp. 414-420.
31. D. H. Kim, E. Byon, G. H. Lee, S. ChoEffect, “Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering”, Thin Solid Films Vol. 510 (2006), pp. 148-153.
32. A. Boulouza, S. Chakrabortyb, A. Giani, F. P. Delannoy, A. Boyer, “Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices”, Journal of Applied Physics Vol. 89, No. 9, (2001), pp. 5009-5014.
33. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, A. Boyer, “Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD”, Materials Science and Engineering B64, (1999), pp. 19-24.
34. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, A. Boyer, “MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor”, Thin Solid Films 315, (1998), pp. 99–103.
35. M. Takahashi, Y. Katou, K. Nagata, S. Furuta, ” The composition and conductivity of electrodeposited Bi-Te alloy films”, Thin Solid Film, vol. 240, (1994), pp. 70-72.
36. M. S. Martin-Gonzalez, A. L. Prieto, R. Gronsky, T. Sands, A. M. Stacya, “ Insights into the electrodeposition of Bi2Te3”, Journal of The Electrochemical Society, Vol. 149, No. 11, (2002), pp.546-554.
37. J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, M. Nicolet, “ Development Of thick-Film thermoelectric microcoolers using electrochemical deposition”, Materials Research Society Symposium Proceedings, Vol. 545, (1998), pp. 493.
38. J. P. Fleurial, G. J. Snyder, J. A. Herman, P.H. Giauque, W.M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, M. A. Nicolet, “Thik-film thermoelectric microdvices”, 18th International Conference of Thermoelectrics, (1999), pp. 294-295.
39. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, J. P. Fleurial, “Thermoelectric Microdevice Fabrication Process and Evaluation at the Jet Propulsion Laboratory (JPL)”, 21th International Conference of Thermoelectrics, (2002).
40. G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by MEMS-like electrochemical process”, Nature Materials, Vol. 2, (2003), pp.528-532.
41. B. Y. Yoo, C. K. Huang, J. R. Lim, J. Hermanb, M. A. Ryan, J. P. Fleurial, N.V. Myung, “Electrochemically deposited thermoelectric n-type Bi2Te3 thin films”, Electrochimica Acta Vol. 50, (2005), pp.4371–4377.
42. D. D. Frari, S Diliberto, N. Stein, C. Boulanger, J. M. Lecuire, ” Comparative study of the electrochemical preparation of Bi2Te3, Sb2Te3, and (BixSb1-x)2Te3 films”, Thin Solid Films Vol. 483, (2005), pp.44-49.
43. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Electroplating and characterization of (B1-xSbx)Te3 thermoelectric films”, 18th International Conference of Thermoelectrics, (1999).
44. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Pulsed electrodeposition of (Bi1-xSbx)2Te3 thermoelectric thin films”, Journal of Applied Electrochemistry, Vol. 36, (2006), pp.449-454.
45. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, J.M. Lecui, “Pulsed electrodeposition and thermoelectric characterization of (Bi1-xSbx)2Te3”, Coating Fils and Surface Engineering, (2005).
46. G. Leimkűhler, I. Kerkamm, R. R. Koch, “ Electrodeposition of Antimony Telluride” , Journal of The Electrochemical Society, Vol. 149, (2002), pp. 474-478.
47. C. Wang, Q. Wang, L. Chen, X. Xu, Q. Yaoa, “Electrodeposition of Sb2Te3 films on Si(100) and Ag substrates”, Electrochemical and Solid Letters, Vol. 9, (2006), pp.147-149.
48. W. L. Wang, Y. Y. Wang, C. C. Wan, “Composition control of electrodeposited Bi–Te based on mass–transfer manipulation”, Journal of The Electrochemical Society, Vol. 153, (2006), pp.400-404.
49. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, M. L. Blohm, “Kinetics and initial stages of bismuth telluride electrodeposition”, Journal of The Electrochemical Society, Vol. 153, (2006), pp.595-602.
50. P. Heo, K. Hagiwara, R. Ichino, M. Okidob, “Electrodeposition and Thermoelectric Characterization of Bi2Te3”, Journal of The Electrochemical Society, Vol. 153,(2006), pp.213-217.
51. S. Michel, N. Stein, M. Schneider, C. BOULANGER,J. M. Lecuire, “ Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition”, Journal of Applied Electrochemistry, Vol. 33, (2003), pp.23-27.
52. D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: the 3 method”, Review of Scientific Instruments, Vol 61,(1990), pp. 802-808.
53. D. J. Yao, H. C. Chien, Y. C. Liu, M. H. Tseng, “A rapid method to measure thermal conductivity of dielectric thin films thermal resistance method”, Proceedings of IPACK2005.
54. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, S. Hasegawa1, ”Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured by a Square Micro-Four-Point Probe Method”, Physical Review Letters, Vol. 9, No. 3, (2003), pp.036805 1.