研究生: |
王志嘉 Wang, Chih-Chia |
---|---|
論文名稱: |
危害氣體捕集與化學偵測方法之研究 A Study of Hazardous Gases Sampling and Chemical Detection Methods |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 有機胺類 、離子層析 、氧化鋅 、石英微量天平 、有機揮發氣體 |
英文關鍵詞: | Organic amines, Ion chromatography, Znic oxide (ZnO), quartz crystal microbalance (QCM), volatile organic compounds (VOCs) |
DOI URL: | https://doi.org/10.6345/NTNU202202783 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合氣體捕集與化學偵測之方法,期望能在環境中即時分析揮發性有機氣體 (VOCs),以增進氣體感測發展與建置具有良好再現性及迅速反應性之感測系統。
本研究第一部分的主要工作內容:對於在工廠附近的周界空氣之現場測試結果所建立對於分析低濃度有機胺類混合物的方法。此本次實驗以甲胺等七種常用於工業上的有機胺類作為目標汙染物。使用兩個充滿去離子水的鐵弗龍衝擊瓶作為採集器。所有胺類的回收值是介於93.2% (三甲胺)到103.4% (丙胺)之間。所收集的樣本利用具有電導偵測器的離子層析儀進行分析。我們藉由分別操作兩種不同溫度的管柱(35.0和17.5 °C)將七種有機胺類分開。此方法的偵測極限範圍在0.11 ~ 0.48 ppb之間,對於環境氣味可以有效的控制。我們也研究了樣品準確值、保存時間及其他化合物的干擾。在電子化學廠外圍環境中,現場測試方法偵測到三種低濃度 ppb等級的目標胺類。我們使用相同方法來定量在其他印刷電路板 (PCB)製造工廠內濃度超過100 ppb的三甲胺。這種不用溶劑和花費合理的採樣方法可以有效地分析在環境上的低濃度胺類並適合不論是在工廠製成區或是其外圍等大範圍環境[69]。
本研究的第二部分探討滴鍍於石英微量天平的奈米多孔性氧化鋅微球對於有機氣體之感測特性。多孔性微球組成的氧化鋅奈米粒子經由水相合成聚合成為具有微米等級直徑的球體。氧化鋅微球之多孔性結構同時提供氣體吸附之足夠表面積與作為氣體交換的擴散路徑,可逆的反應訊號說明完全無殘留的吸附與脫附作用。聚氯乙烯薄層在氧化鋅與石英微量天平的電極表面之間作為黏著層。本研究進行具有不同官能基的四種揮發性有機化合物測試以顯示在聚氯乙烯與多孔性氧化鋅粉末之間的選擇性區別。為了比較於聚異丁烯與奈米多孔性氧化鋅之間在選擇性方面的差別,我們使用有著不同官能基的五種揮發性有機化合物來測試在石英微量天平上的感測薄膜。此外,奈米多孔性氧化鋅鍍膜感測器的反應時間只有聚異丁烯鍍膜感測器的一半,此結果指出奈米多孔性氧化鋅微球可以作為石英微量天平具選擇性與迅速反應的材料選項之一[70,71]。
This study presents the establishment and the field-test results of a method in order to analyze low levels of amine mixtures in the ambient air near industrial processes. Seven amines, which are commonly used in industrial processes, were selected as target contaminants. Two-stage Teflon impingers that were filled with deionized water were used as the samplers. The recoveries of all amines were between 93.2% (trimethyl amine) and 103.4% (propyl amine). After collecting the samples, the researchers analyzed the samples via ion-chromatograph with a conductivity detector. The seven amines was separated by operating the column at two different temperatures (35.0 and 17.5 ℃). The limitation of this detective method ranged from 0.11 to 0.48 ppb, which is sufficient for environmental odor control. While using this method, the accuracy, sample preservation time and interference of other chemicals were also studied. The field tests of this method detected three target amines at low ppb levels in the environment outside an electronic chemical plant. A level of trimethyl amine of more than 100 ppb was quantified inside another PCB production plant by the same method. This solvent-free sampling and cost-effective method can effectively analyze low concentrations of amines in the environment, which makes it suitable for large-scale investigations[69].
The organic vapor-sensing properties of nano-porous ZnO microspheres coated onto a quartz crystal microbalance were studied. The porous microspheres consisted of ZnO nanoparticles aggregated via aqueous-phase synthesis into spheres with diameters in the micrometer range. The porous structure of ZnO microspheres provided both a sufficient surface area for vapor adsorption and a diffusion path for gas exchange. The reversible response signals suggested that complete desorption without contamination was achieved. A thin layer of poly vinyl chloride (PVC) serves as the adhesion layer between ZnO and the gold of QCM electrodes. The rapid and reversible response signals suggest that sensing process involved only physical adsorption. Four volatile organic compounds with various functional groups were tested to demonstrate the selectivity differences between poly vinyl chloride (PVC) and porous ZnO powder. Sensing films on a quartz crystal microbalance (QCM) were tested using five volatile organic compounds with different functional groups in order to compare the differences in selectivity between poly isobutylene (PIB) and nano-porous ZnO. In addition, the response time was half that of the PIB-coated sensor. The results of this study indicate that nano-porous ZnO microspheres represent an alternative material that could provide selectivity and rapid response for QCM[70,71].
[1] Hassim, M.H., Péreza, A.L., and Hurme, M., Estimation of Chemical Concentration due to Fugitive Emissions during Chemical Process Design. Process Saf. Environ. Prot. 2010, 88, 73-184.
[2] Hassim, M.H., and Hurme, M., Occupational Chemical Exposure and Risk Estimation in Process Development and Design. Process Saf. Environ. Prot. 2010, 88, 225-235.
[3] Lee, D.Y., and Wexler, A.S., Atmospheric Amines e Part III: Photochemistry and Toxicity. Atmo. Environ. 2013, 71, 95-103.
[4] Ge, X., Wexler, A.S., and Clegg, S.L., Atmospheric Amines Part I. A Review. Atmos. Environ. 2011, 45, 524-546.
[5] O’Neill D.H., and Phillips V.R., A Review of the Control of Odour Nuisance from Livestock Buildings: Part 3, Properties of the Odorous Substances Which Have Been Identified in Livestock Wastes or in the Air Around Them. J. Agric. Engin. Res. 1992, 53, 23-50.
[6] Ngwabie N.M., Schade G.W., Custer T.G., Linke S., and Hinz T., Volatile Organic Compound Emission and Other Trace Gases from Selected Animal Buildings. Landbauforsch. Volk. 2007, 57, 273-284.
[7] Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., and Bhattacharjee, C., Recovery of Whey Proteins and Lactose from Dairy Waste: A Step towards Green Waste Management. Process Saf. Environ. Prot. 2016, 101, 27-33.
[8] Arun, C., and Sivashanmugam, P., Investigation of Biocatalytic Potential of Garbage Enzyme and its Influence on Stabilization of Industrial Waste Activated
Sludge. Process Saf. Environ. Prot. 2015, 94, 471-478.
[9] Rappert, S., and Müller, R., Odor Compounds in Waste Gas Emissions from Agricultural Operations and Food Industries. Waste Manage. 2005, 25(9), 887-907.
[10] Liu, L., Pang, C., Wu, S., and Dong, R., Optimization and Evaluation of an Air-Recirculated Stripping for Ammonia Removal from the Anaerobic Digestate of Pig Manure. Process Saf. Environ. Prot. 2015, 94, 350-357.
[11] Zhang, S., Bi, X.T., and Clift, R., Life Cycle Analysis of a Biogas-Centred Integrated Dairy Farm-Greenhouse System in British Columbia. Process Saf. Environ. Prot. 2015, 93, 18-30.
[12] Filipy J, Rumburg B, Mount G, Westberg H, and Lamb B., Identification and Quantification of Volatile Organic Compounds from a Dairy. Atmos. Environ. 2006, 40(8), 1480-1494.
[13] Schade, G.W., and Crutzen, P.J., Emmision of Alphatic Amines from Animal Husbandry and Their Reactions: Potential Source of N2O and HCN. J. Atmo. Chem. 1995, 22, 319-346.
[14] Sintermann, J., Schallhart, S., Kajos, M., Jocher, M., Bracher, A., Munger, A., Johnson, D., Neftel, A., and Ruuskanen, T., Trimethylamine Emissions in Animal Husbandry. Biogeosciences 2014, 11, 5073-5085.
[15] Rabaud, N.E., Ebeler, S.E., Ashbaugh, L.L., and Flocchini, R.G., Characterization and Quantification of Odorous and Non-Odorous Volatile Organic Compounds near a Commercial Dairy in California. Atmo. Environ. 2003, 37(7), 933-940.
[16] Zhao, L., Zhu, L., and Lee, H.K., Analysis of Aromatic Amines in Water Samples by Liquid-Liquid-Liquid Microextraction with Hollow Fibers and High-Performance Liquid Chromatography. J. Chromatogr. A 2002, 963(1-2), 239-248.
[17] Pinheiro, H.M., Touraud, E., and Thomas, O., Aromatic Amines from Azo Dye Reduction: Status Review with Emphasis on Direct UV Spectrophotometric Detection in Textile Industry Wastewaters. Dyes Pigments 2004, 61(2), 121-139.
[18] Ge, X., Wexler, A.S., and Clegg, SL., Atmospheric Amines-Part II. Thermodynamic Properties and Gas/Particle Partitioning. Atmos. Environ. 2011, 45, 561-577.
[19] Ge, X., Shaw, S.L., and Zhang, Q., Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 5066-5075.
[20] Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H.E., Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P.P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin III, R.L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen,A., Riipinen, I., Kurtén, T., Johnston, M.V., Smith, J.N., Ehn, M., Mentel, T.F., Lehtinen, K.E.J., Laaksonen, A., Kerminen, V.M., and Worsnop D.R., Direct Observations of Atmospheric Aerosol Aucleation. Science 2013, 339, 934-946.
[21] Healy, R.M., Evans, G.J., Murphy, M., Sierau, B., Arndt J., McGillicuddy, E., O’Connor, I.P., Sodeau, J.R., and Wenger, J.C., Single-particle Speciation of Alkylamines in Ambient Aerosol at Five European Sites. Anal. Bioanal. Chem. 2015, 407, 5899-5909.
[22] Maris, C., Laplanche, A., Morvan, J., and Bloquel, M., Static Headspace Analysis of Aliphatic Amines in Aqueous Samples. J. Chromatogr. A 1999, 846, 331-339.
[23] Verriele, M., Plaisance, H., Depelchin, L., Benchabane, S., Locoge, N., and Meunierc, G., Determination of 14 Amines in Air Samples Using Midget Impingers Sampling Followed by Analysis with Ion Chromatography in Tandem with Mass Spectrometry. J. Environ. Monitor. 2012, 14(2), 402-408.
[24] Chang, I.H., Lee, C.G., and Lee, D.S., Development of an Automated Method for Simultaneous Determination of Low Molecular Weight Aliphatic Amines and Ammonia in Ambient Air by Diffusion Scrubber Coupled to Ion Chromatography. Anal. Chem. 2003, 75(22), 6141-6146.
[25] Ku, Y.P., Yang, C., Lin, G.Y., and Tsai, C.J., An On-Line Parallel-Plate Wet Denuder System for Monitoring Acetic Acid Gas. Aeros. Air Qual. Res. 2010, 10, 479-488.
[26] Dawson, M.L., Perraud, V., Gomez, A., Arquero, K.D., Ezell, M.J., and Finlayson-Pitts, B.J., Measurement of Gas-Phase Ammonia and Amines in Air by Collection onto an Ion Exchange Resin and Analysis by Ion Chromatography. Atmos. Meas. Tech. 2014, 7, 2733-2744.
[27] Namieśnik, J., Jastrzbska, A., and Zygmunt, B., Determination of Volatile Aliphatic Amines in Air by Solid-Phase Microextraction Coupled with Gas Chromatography with Flame Ionization Detection. J. Chromatogr. A 2003, 1016, 1-9.
[28] Szulejko, J.E., and Kim, K.H., A review of Sampling and Pretreatment Techniques for the Collection of Airborne Amines. Trends Anal. Chem. 2014, 57,118-134.
[29] Ng, R.T.L., and Hassim, M.H., Strategies for Assessing and Reducing Inherent Occupational Health Hazard and Risk Based on Process Information. Process Saf. Environ. Prot. 2015, 97, 91-101.
[30] Yu, C., and Crump, D., A Review of the Emission of VOCs from Polymeric Materials Used in Buildings. Build. Environ. 1998, 33, 357-374.
[31] Yang, S., Gao, K., and Yang, X., Volatile Organic Compounds (VOCs) Formation due to Interactions between Ozone and Skin-Oiled Clothing: Measurements by Extraction-Analysis-Reaction Method. Build. Environ. 2016, 103, 146-154.
[32] Wu, C.H., Feng, C.T., Lo, Y.S., Lin, T.Y., and Lo, J.G., Determination of Volatile Organic Compounds in Workplace Air by Multisorbent Adsorption / Thermal Desorption - GC/MS. Chemosphere 2004, 56, 71-80.
[33] Singh, S., Sensors - An Effective Approach for the Detection of Explosives. J. Hazard. Mater. 2007, 144, 15-28.
[34] Sun, Y.F., Liu, S.B., Meng, F.L., Liu, J.Y., Jin, Z., Kong, L.T., and Liu, J.H., Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610-2631.
[35] Hsieh, M.D., and Zellers, E.T., Limits of Recognition for Simple Vapor Mixtures Determined with a Microsensor Array. Anal. Chem. 2004, 76, 1885-1895.
[36] Yang, C.Y., Li, C.L., and Lu, C.J., A Vapor Selectivity Study of Microsensor Arrays Employing Various Functionalized Ligand Protected Gold Nanoclusters. Anal. Chim. Acta 2006, 565, 17-26.
[37] Konvalina, G., and Haick, H., Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66-76.
[38] Li, C.L., Chen, Y.F., Liu, M.H., and Lu, C.J., Utilizing Diversified Properties of Monolayer Protected Gold Nano-Clusters to Construct a Hybrid Sensor Array for Organic Vapor Detection. Sens. Actuat. B: Chem. 2012, 169, 349-359.
[39] Grate, J.W., and Zellers, E.T., The Fractional Free Volume of the Sorbed Vapor in Modeling the Viscoelastic Contribution to Polymer-Coated Surface Acoustic Wave Vapor Sensor Responses. Anal. Chem. 2000, 72, 2861-2868.
[40] Suaerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichtenund zur Mikrowagung, Zeitschrift. Physik 1959, 155, 206-222.
[41] Öztürk, S., Kösemen, A., Sen, Z., Kılınç, N., and Harbeck, M., Poly (3-Methyl- thiophene) Thin Films Deposited Electro- chemically on QCMs for the Sensing of Volatile Organic Compounds. Sensors 2016, 16, 423-434.
[42] Li, G., Zheng, J., Ma, X., Sun, Y., Fu, J., and Wu, G., Development of QCM Trimethylamine Sensor Based on Water Soluble Polyaniline. Sensors 2007, 7, 2378-2388.
[43] Kim, B.C., Yamamoto, T., and Kim, Y.H., In-Line Measurement of Water Contents in Ethanol Using a Zeolite-Coated Quartz Crystal Microbalance. Sensors 2015, 15, 27273-27282.
[44] Lu, C.J., and Shih, J.S., Detection of Polar Organic Vapours with Piezoelectric Crystals Coated with Crown Ethers. Anal. Chim. Acta 1995, 306, 129-137.
[45] Li, C.L., and Lu, C.J., Establishing Linear Solvation Energy Relationships between VOCs and Monolayer-Protected Gold Nanoclusters Using Quartz Crystal Microbalance. Talanta 2009, 79, 851-855.
[46] Su, P.G., Sun, Y.L., and Lin, C.C., A Low Humidity Sensor Made of Quartz Crystal Microbal-Ance Coated with Multi-Walled Carbon Nanotubes/Nafion Composite Material films. Sens. Actuat. B Chem. 2006, 115, 338-343.
[47] Lu, H.L., Lu, C.J., Tian, W.C., and Sheen, H.J., A Vapor Response Mechanism Study of Surface-Modified Single-Walled Carbon Nanotubes Coated Chemiresistors and Quartz Crystal Microbalance Sensor Arrays. Talanta 2015, 131, 467-474.
[48] Zhang, K., Fan, G., Hu, R., and Li, G., Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres. Sensors 2015, 15, 21153-21168.
[49] Xie, J., Wang, H., and Duan, M., QCM Chemical Sensor Based on ZnO Colloid Spheres for the Alcohols. Sens. Actuat. B Chem. 2014, 203, 239-244.
[50] Procek, M., Stolarczyk, A., Pustelny, T., and Maciak, E., A Study of a QCM Sensor Based on TiO2 Nanostructures for the Detection of NO2 and Explosives Vapours in Air. Sensors 2015, 15, 9563-9581.
[51] Fuchiwaki, Y., Tanaka, M., Makita, Y., and Ooie, T., New Approach to a Practical Quartz Crystal Microbalance Sensor Utilizing an Inkjet Printing System. Sensors 2014, 14, 20468-20479.
[52] Wang, Y., Ding, P., Hu, R., Zhang, J., Ma, X., Luo, Z., and Li, G., A Dibutyl Phthalate Sensor Based on a Nanofiber Polyaniline Coated Quartz Crystal Monitor. Sensors 2013, 13, 3765-3775.
[53] Kamarudin, K., Mamduh, S.M., Shakaff, A. Y.M., Saad, S.M., Zakaria, A., Abdullah, A.H., and Kamarudin, L.M., Flexible and Autonomous Integrated System for Characterizing Metal Oxide Gas Sensor Response in Dynamic Environment. Instrum. Sci. Technol. 2015, 43(1), 74-88.
[54] Baś, B., Jakubowska, M., Ciepiela, F., and Kubiak, W.W., New Multipurpose Electrochemical Analyzer for Scientific and Routine Tasks. Instrum. Sci. Technol. 2010, 38(6), 421-435.
[55] Muñoz, B.C., Steinthal, G., and Sunshine, S., Conductive Polymer‐Carbon Black Composites‐Based Sensor Arrays for Use in an Electronic Nose. Sensor Rev. 1999, 19(4), 300-305.
[56] Su, P.G., and Lu, Z.M., Flexibility and Electrical and Humidity-Sensing Properties of Diamine-Functionalized Graphene Oxide Films. Sens. Actuat. B Chem. 2015, 211, 157-163.
[57] Chen, K.J., and Lu, C.J., A Vapor Sensor Array Using Multiple Localized Surface Plasmon Resonance Bands in a Single UV-Vis Spectrum. Talanta 2010, 81(4-5), 1670-1675.
[58] Özmen, A., Ebeoğlu, M.A., Mumyakmaz, B., and Balta, D., Determination of Volatile Organic Compounds in Air by a Surface Acoustic Wave Array. Instrum. Sci. Technol. 2016, 44(1), 54-64.
[59] Ding, P., Li, G.Y., Chen, X.Q., and Liu, L.H., Molecular Recognition of Thiol-Terminated β-Cyclodextrin Derivative by Using Quartz Crystal Microbalance. Instrum. Sci. Technol. 2012, 40(4), 327-337.
[60] Huang, K.N., Shen, C.Y., Wang, S.H., and Hung, C.H., Development of Quartz Crystal Microbalance-Based Immunosensor for Detecting Alpha-Fetoprotein. Instrum. Sci. Technol. 2013, 41(3), 311-324.
[61] Chen, L., Zhang, J., Zhai, X.H., Han, J.Q., and Lu, J.Y., Investigations of Humidity Properties on Indium Oxide Thin Films Coated Quartz Crystal Microbalances. Instrum. Sci. Technol. 2012, 40(2-3), 216-225.
[62] Kamel, M.M., El Nimr, M.K., Assar, S.T., and Atlam, A.S., Design of a Simple Low-Cost Quartz Crystal Microbalance System. Instrum. Sci. Technol. 2013, 41(3), 473-489.
[63] Koçum, C., Erdamar, A., and Ayhan, H., Design of Temperature Controlled Quartz Crystal Microbalance System. Instrum. Sci. Technol. 2010, 38(1), 39-51.
[64] SeQuant AB (2007), A Practical Guild to Ion Chromatography, Umea, Sweden. ISBN 978-91-631-8056-9.
[65] Liu, M.H., Huang, H.T., Lin, C.M., Chen, J.M., and Liao, S.C., Mg Gradient- Doped LiNi0.5Mn1.5O4 as the Cathode Material for Li-Ion Batteries. Electrochim. Acta 2014, 120, 133-139.
[66] Saussey, J., Lavalley, J.C., and Bovet, C., Infrared Study of CO2 Adsorption on ZnO. J. Chem. Soc. Faraday Trans. 1982, 78, 1457-1463.
[67] Vohs, J.M., and Barteau, M.A., Structure, Sensitivity, Selectivity, and Adsorbed Intermediates in the Reactions of Acetone and 2-Propanol on the Polar Surface of Zinc Oxide. J. Phys. Chem. 1991, 95, 297-302.
[68] Noei, H., Qiu, H., Wang, Y., Loffler, E., Woll, C., and Muhler, M., The Identification of Hydroxyl Groups on ZnO Nanoparticles by Infrared Spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 7092-7097.
[69] Wang, C.C., Sung, L.Y., Wu, P.L., Ke, S.Y., Ng, S.X., Jian, R.S., Lo, E.W., and Lu, C.J., An Analytical Method for the Field Investigation of Environmental Amines Released by Industrial Processes. Process Safety and Environmental Protection. 2016, 102, 328–335.
[70] Wang, C.C., Lin, P.Y., Lu, C.J., and Liu, M.H., Utilizing Bilayered Nano-porous ZnO Powder and PVC Composite Coating as the Sensing Film for Quartz Crystal Microbalance. Journal of Chung Cheng Institute of Technology. (in press)
[71] Wang, C.C., Lin, P.Y., Lu, C.J., and Liu, M.H., Rapid Determination of Volatile Organics Using a Nanoporous Zinc Oxide Microsphere-coated Quartz Crystal Microbalance. Instrumentation Science and Technology. 2017, 45, 639-649.