簡易檢索 / 詳目顯示

研究生: 彭益凡
論文名稱: 匝道車輛辨識與計數
Classification and Counting of Vehicles on Freeway Ramps
指導教授: 陳世旺
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 電腦視覺車輛辨識
英文關鍵詞: Computer vision, Vehicle classification
論文種類: 學術論文
相關次數: 點閱:462下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的進步,車輛已成為民眾生活中不可或缺的一部份,因此如何有效地交通控管便成為一個重要的課題。除了一般傳統車輛計數及辨識的儀器外,近年來以電腦視覺為基礎的車輛辨識系統也漸漸受到注目。大多數的車輛辨識系統將攝影機架設於道路上方,並且以車輛大小來分類車輛種類。這樣的車輛辨識系統不僅架設困難,且分類方法較不精細。
    本研究中提供了一個以電腦視覺為基礎,不受天氣影響且架設方便的車輛辨識系統。有別於多數的車輛辨識系統,我們將攝影機架設於道路側面,以側拍的方式監測道路影像。攝影機架設於道路側面,不僅架設方便,無需負擔額外的架設費用外,利用車輛側面的形狀,我們更可以將車輛種類更細分為小客車、小卡車、大卡車、箱型車、貨車、載卡多、大客車,提供ㄧ個更精細的分類結果。另外本系統不受天氣影響,可用非常短的距離監測道路影像的特性,使得本系統能普便應用於各種車道環境。

    For many decades, vehicles have been an essential part of modern life. As the number of vehicles increased, transportation problems have become more and more serious. Tasks of vehicle counting and classification systems for vehicle classification based on computer vision have attracted much attention. In most such systems, a camera is set above a lane of traffic and classifies vehicles according to their sizes. Setting cameras above road is difficult and expensive, and classifying the vehicles according to their sizes is challenging.
    In this paper, we propose a system based on computer vision for vehicle classification and counting under different kinds of environments, and is also very convenient to install. Unlike most systems, we set up the camera beside a road. There is little additional cost to set up the camera. Based on the profile of a vehicle’s shape, we classify it one of many categories, such as sedan, flatbed truck, van, delivery truck, sport utility vehicle, and trailer truck. However, our system, which can work in all kinds of weather and in a confined space, should prove to be easy to adopt.

    目錄 第一章 簡介…………………………………………………………1 1.1 緒論……………………………………………………1 1.2 文獻探討………………………………………………5 第二章 系統架構及流程……………………………………………11 2.1 系統設置………………………………………………11 2.2 系統運作流程…………………………………………14 第三章 前景擷取……………………………………………………33 3.1 監測行…………………………………………………33 3.2 EPI和變化圖…………………………………………36 3.3 車輛定位………………………………………………37 第四章 特徵擷取……………………………………………………46 4.1 外型修補………………………………………………46 4.2 建立特徵向量…………………………………………50 第五章 車輛分類……………………………………………………70 5.1 ART2……………………………………………………70 5.2 ART2的架構……………………………………………72 5.3 本系統的應用及訓練過程……………………………76 第六章 實驗…………………………………………………………83 6.1 天氣對本系統的影響…………………………………84 6.2 系統在多車道的運作情況……………………………89 6.3 車輛停留在監測行……………………………………92 第七章 結論及未來方向……………………………………………96 參考文獻………………………………………………………………97 圖目錄 圖1-1 車輛上方圖……………………………………………………10 圖1-2 車輛側面圖……………………………………………………10 圖2-1 車輛occlusion………………………………………………19 圖2-2 車輛上方圖……………………………………………………19 圖2-3 車輛陰影及倒影問題…………………………………………20 圖2-4 車輛側面外型…………………………………………………21 圖2-5 道路在系統監測影像中所佔面積小…………………………22 圖2-6 系統攝影機架設………………………………………………23 圖2-7 系統架設示意圖………………………………………………23 圖2-8 前景擷取流程圖………………………………………………24 圖2-9 特徵擷取流程圖………………………………………………25 圖2-10 車輛分類流程圖………………………………………………26 圖2-11 監測行示意圖…………………………………………………27 圖2-12 車輛EPI………………………………………………………27 圖2-13 車輛變化圖……………………………………………………28 圖2-14 車輛邊線圖……………………………………………………28 圖2-15 修補後變化圖…………………………………………………29 圖2-16 車速對變化圖影響……………………………………………30 圖2-17 正規化圖………………………………………………………31 圖2-18 各車種之車輛形狀……………………………………………32 圖3-1 監測行之選擇…………………………………………………39 圖3-2 多車道之應用…………………………………………………40 圖3-3 計算變化點示意圖……………………………………………41 圖3-4 車輛通過監測行與變化點的關係……………………………42 圖3-5 製作EPI之示意圖……………………………………………42 圖3-6 製作變化圖之示意圖…………………………………………43 圖3-7 車輛定位方法…………………………………………………44 圖3-8 定位車輛外型之結果圖………………………………………45 圖4-1 車輛合併………………………………………………………55 圖4-2 車輛外型破碎放大圖…………………………………………56 圖4-3 Sobel mask……………………………………………………57 圖4-4影像中的四個方向……………………………………………57 圖4-5 決定方向法則…………………………………………………58 圖4-6 尋找破碎外型…………………………………………………59 圖4-7 車輛外型修補後結果…………………………………………60 圖4-8 邊線方向與修補的關係………………………………………61 圖4-9 變化圖正規化後的結果………………………………………62 圖4-10 解析度與鋸齒狀的關係………………………………………63 圖4-11 解析度與關鍵點的關係1……………………………………64 圖4-12 解析度與關鍵點的關係2……………………………………65 圖4-13 SIFT方法圖示…………………………………………………66 圖4-14 邊線效應原因之圖示…………………………………………67 圖4-15 各車種的正規化圖與車輛形狀………………………………68 圖4-16 建立特徵向量之圖示…………………………………………69 圖5-1 ART2架構圖……………………………………………………81 圖5-2 F1層中各子層的運算…………………………………………82 圖6-1 各車種分類圖…………………………………………………84 圖6-2 晴天匝道圖……………………………………………………85 圖6-3 陰天匝道圖……………………………………………………86 圖6-4 雨天匝道圖……………………………………………………87 圖6-5 信義路多車道…………………………………………………89 圖6-6 影片EPI-1……………………………………………………90 圖6-7 松山路多車道…………………………………………………91 圖6-8 影片EPI-2……………………………………………………91 圖6-9 影片EPI-3……………………………………………………93 表目錄 表6-1 晴天車輛統計表………………………………………………85 表6-2 陰天車輛統計表………………………………………………86 表6-3 雨天車輛統計表………………………………………………87 表6-4 統計總和………………………………………………………88 表6-5 多車道車輛統計表-1…………………………………………90 表6-6 多車道車輛統計表-2…………………………………………92

    [Web01] http://www.freeway.gov.tw/index.asp

    [Web02] http://www.thb.gov.tw/download/traname.htm#A002

    [Web03] http://w3.cpami.gov.tw/design/index4.htm

    [Web04] http://www.ce.tku.edu.tw/~yinghaur/hwy/hwy_ch9.htm

    [Web05] http://www.kmph.gov.tw/CmsLink.aspx?ID=879&LinkType=5&C_ID=384

    [Web06] http://www.wfdn.com.tw/9310/041021/news/102104-1.htm

    [Web07] 應用 WebGIS 提供即時都市道路交通資訊

    [Web08] http://its.iis.sinica.edu.tw/condetection.php3

    [Web09]Bill Green,“Canny Edge Detection Tutorial”,http://www.pages.drexel.edu/~weg22/can_tut.html

    [Web10]http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm

    [Ang03] Angulo, J.; Serra, J. ,“Color segmentation by ordered mergings, ”;Proc. of Int’l Conf. On Image Processing, vol 2, pp. II - 125-8 vol.3, 2003.

    [Ave04] Avery, R.P.; Wang, Y.; Scott Rutherford, G. ,“Length-based vehicle classification using images from uncalibrated video cameras,” Proc. of 7th IEEE int’l Conf. Intelligent Transportation Systems, pp.737-742, 2004.

    [Bet96] Betke, M.; Haritaoglu, E.; Davis, L.S. ,“Multiple vehicle detection and tracking in hard real-time,”Proc. On Intelligent Vehicles Symposium of IEEE, pp.351-356, 1996.

    [Chr88] Chris Harris and Mike Stephens, “A Combined corner and Edge Detector, ”Plessey Research Roke Manor, UK. Proc. of The 4th Alvey Vision Conf., Manchester, pp 147-151. 1988.

    [Chu00] Siyal, M.Y. ,“A new segmentation technique for classification of moving vehicles Chunrui Zhang, ” Vehicular Technology Conf. Proc. of IEEE 51st, vol 1, pp.323-326, 2000.

    [Chu04] Chung-Lin Huang; Wen-Chieh Liao; “A vision-based vehicle identification system, ” Proc. of the 17th Int’l Conf. On Pattern Recognition of ICPR, vol 4, pp.364–367, 2004.

    [Dav04] David G. Lowe, ”Distinctive Image Features from Scale-Invariant Keypoints, ”International Journal of Computer Vision, 2004.

    [Jam92] James A. Freeman, David M. Skapura, “Adaptive Resonance Theory, ”Neural Networks, Algorithm, Applications, and Programming Techniques, Addison-Wesley Publishing Company, 1992.

    [Jun95] Jung Soh; Byung Tae Chun; Min Wang,”Analysis of road image sequence for vehicle counting” On IEEE int’l Conf. vol 1. pp.679-683 1995

    [Kam02] Kamijo, S.; Nishida, T.; Satoh, S.; Sakauchi, M. “Automated behavior and statistical analyses from traffic images based on precise vehicle tracking algorithm,”
    Proc. of Intelligent Transportation Systems On IEEE 5th Int’l Conf., pp.920-925, 2002.

    [Kle01] L.A. Klein, Sensor Technologies and Data Requirements for ITS, Artech House,2001.

    [Lai01] Lai, A.H.S ; Fung, G.S.K.; Yung, N. H. C.,”Vehicle type classification from visual dimension estimation, ”Proc. of Intelligent Trans. Systems On IEEE, pp.201-206, 2001.

    [Liq05] Li-Qun Xu; Landabaso, J.L.; Pardas, M.,”Shadow Removal with Blob-Based Morphological Reconstruction for Error Correction” Proc.(ICASSP ‘05). IEEE Int’l Conf. of Acoustics, Speech, and Signal Processing on vol 2, pp.729-732, 2005.

    [Lis04] Liseno, A.; Pierri, R. ,“Shape reconstruction by the spectral data of the far-field operator: analysis and performances” Antennas and Propagation of IEEE Transactions, vol 52, pp.899-903, 2004.

    [Mic91] Michalopoulos, P.G.. “Vehicle detection video through image processing: the Autoscope system Michalopoulos,”Vehicular Technology of IEEE, vol 40, pp.21-29, 1991.

    [Nol 95] Noll, D.; Werner, M.; von Seelen, W. “Real-time vehicle tracking and classification, ”Proc. of the Intelligent Vehicles '95 Symposium, pp.101 – 106, 1995.

    [Smi96] Smith, C.E.; Richards, C.A.; Brandt, S.A.; Papanikolopoulos, N.P. , “Visual tracking for intelligent vehicle-highway systems, ” Vehicular Technology of IEEE Transactions, vol 45, pp.744-759.

    [Wan04] Wang, J.M.; Chung, Y.C.; Chang, C.L.; Chen, S.W. , “Shadow detection and removal for traffic images,” IEEE Int’l Conf. On Networking, Sensing and Control,vol 1,pp.649 – 654, 2004.

    [Wei01] Wei Wu; Zhang QiSen; Wang Mingjun ,“A method of vehicle classification using models and neural networks, ” Vehicular Technology Conf. of IEEE VTS 53rd ,vol 4, pp.3022-3026, 2001.

    [蔡04] 即時車種分類與計數
    國立台灣師範大學 資訊教育研究所 蔡宗諭 2004
    國家圖書館全國博碩士論文 系統編號: 092NTNU0395001

    [曾02] 西濱快速公路之車流特性設計
    九一年道路交通安全與執法研討會

    QR CODE