研究生: |
彭益凡 |
---|---|
論文名稱: |
匝道車輛辨識與計數 Classification and Counting of Vehicles on Freeway Ramps |
指導教授: | 陳世旺 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 電腦視覺 、車輛辨識 |
英文關鍵詞: | Computer vision, Vehicle classification |
論文種類: | 學術論文 |
相關次數: | 點閱:394 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的進步,車輛已成為民眾生活中不可或缺的一部份,因此如何有效地交通控管便成為一個重要的課題。除了一般傳統車輛計數及辨識的儀器外,近年來以電腦視覺為基礎的車輛辨識系統也漸漸受到注目。大多數的車輛辨識系統將攝影機架設於道路上方,並且以車輛大小來分類車輛種類。這樣的車輛辨識系統不僅架設困難,且分類方法較不精細。
本研究中提供了一個以電腦視覺為基礎,不受天氣影響且架設方便的車輛辨識系統。有別於多數的車輛辨識系統,我們將攝影機架設於道路側面,以側拍的方式監測道路影像。攝影機架設於道路側面,不僅架設方便,無需負擔額外的架設費用外,利用車輛側面的形狀,我們更可以將車輛種類更細分為小客車、小卡車、大卡車、箱型車、貨車、載卡多、大客車,提供ㄧ個更精細的分類結果。另外本系統不受天氣影響,可用非常短的距離監測道路影像的特性,使得本系統能普便應用於各種車道環境。
For many decades, vehicles have been an essential part of modern life. As the number of vehicles increased, transportation problems have become more and more serious. Tasks of vehicle counting and classification systems for vehicle classification based on computer vision have attracted much attention. In most such systems, a camera is set above a lane of traffic and classifies vehicles according to their sizes. Setting cameras above road is difficult and expensive, and classifying the vehicles according to their sizes is challenging.
In this paper, we propose a system based on computer vision for vehicle classification and counting under different kinds of environments, and is also very convenient to install. Unlike most systems, we set up the camera beside a road. There is little additional cost to set up the camera. Based on the profile of a vehicle’s shape, we classify it one of many categories, such as sedan, flatbed truck, van, delivery truck, sport utility vehicle, and trailer truck. However, our system, which can work in all kinds of weather and in a confined space, should prove to be easy to adopt.
[Web01] http://www.freeway.gov.tw/index.asp
[Web02] http://www.thb.gov.tw/download/traname.htm#A002
[Web03] http://w3.cpami.gov.tw/design/index4.htm
[Web04] http://www.ce.tku.edu.tw/~yinghaur/hwy/hwy_ch9.htm
[Web05] http://www.kmph.gov.tw/CmsLink.aspx?ID=879&LinkType=5&C_ID=384
[Web06] http://www.wfdn.com.tw/9310/041021/news/102104-1.htm
[Web07] 應用 WebGIS 提供即時都市道路交通資訊
[Web08] http://its.iis.sinica.edu.tw/condetection.php3
[Web09]Bill Green,“Canny Edge Detection Tutorial”,http://www.pages.drexel.edu/~weg22/can_tut.html
[Web10]http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm
[Ang03] Angulo, J.; Serra, J. ,“Color segmentation by ordered mergings, ”;Proc. of Int’l Conf. On Image Processing, vol 2, pp. II - 125-8 vol.3, 2003.
[Ave04] Avery, R.P.; Wang, Y.; Scott Rutherford, G. ,“Length-based vehicle classification using images from uncalibrated video cameras,” Proc. of 7th IEEE int’l Conf. Intelligent Transportation Systems, pp.737-742, 2004.
[Bet96] Betke, M.; Haritaoglu, E.; Davis, L.S. ,“Multiple vehicle detection and tracking in hard real-time,”Proc. On Intelligent Vehicles Symposium of IEEE, pp.351-356, 1996.
[Chr88] Chris Harris and Mike Stephens, “A Combined corner and Edge Detector, ”Plessey Research Roke Manor, UK. Proc. of The 4th Alvey Vision Conf., Manchester, pp 147-151. 1988.
[Chu00] Siyal, M.Y. ,“A new segmentation technique for classification of moving vehicles Chunrui Zhang, ” Vehicular Technology Conf. Proc. of IEEE 51st, vol 1, pp.323-326, 2000.
[Chu04] Chung-Lin Huang; Wen-Chieh Liao; “A vision-based vehicle identification system, ” Proc. of the 17th Int’l Conf. On Pattern Recognition of ICPR, vol 4, pp.364–367, 2004.
[Dav04] David G. Lowe, ”Distinctive Image Features from Scale-Invariant Keypoints, ”International Journal of Computer Vision, 2004.
[Jam92] James A. Freeman, David M. Skapura, “Adaptive Resonance Theory, ”Neural Networks, Algorithm, Applications, and Programming Techniques, Addison-Wesley Publishing Company, 1992.
[Jun95] Jung Soh; Byung Tae Chun; Min Wang,”Analysis of road image sequence for vehicle counting” On IEEE int’l Conf. vol 1. pp.679-683 1995
[Kam02] Kamijo, S.; Nishida, T.; Satoh, S.; Sakauchi, M. “Automated behavior and statistical analyses from traffic images based on precise vehicle tracking algorithm,”
Proc. of Intelligent Transportation Systems On IEEE 5th Int’l Conf., pp.920-925, 2002.
[Kle01] L.A. Klein, Sensor Technologies and Data Requirements for ITS, Artech House,2001.
[Lai01] Lai, A.H.S ; Fung, G.S.K.; Yung, N. H. C.,”Vehicle type classification from visual dimension estimation, ”Proc. of Intelligent Trans. Systems On IEEE, pp.201-206, 2001.
[Liq05] Li-Qun Xu; Landabaso, J.L.; Pardas, M.,”Shadow Removal with Blob-Based Morphological Reconstruction for Error Correction” Proc.(ICASSP ‘05). IEEE Int’l Conf. of Acoustics, Speech, and Signal Processing on vol 2, pp.729-732, 2005.
[Lis04] Liseno, A.; Pierri, R. ,“Shape reconstruction by the spectral data of the far-field operator: analysis and performances” Antennas and Propagation of IEEE Transactions, vol 52, pp.899-903, 2004.
[Mic91] Michalopoulos, P.G.. “Vehicle detection video through image processing: the Autoscope system Michalopoulos,”Vehicular Technology of IEEE, vol 40, pp.21-29, 1991.
[Nol 95] Noll, D.; Werner, M.; von Seelen, W. “Real-time vehicle tracking and classification, ”Proc. of the Intelligent Vehicles '95 Symposium, pp.101 – 106, 1995.
[Smi96] Smith, C.E.; Richards, C.A.; Brandt, S.A.; Papanikolopoulos, N.P. , “Visual tracking for intelligent vehicle-highway systems, ” Vehicular Technology of IEEE Transactions, vol 45, pp.744-759.
[Wan04] Wang, J.M.; Chung, Y.C.; Chang, C.L.; Chen, S.W. , “Shadow detection and removal for traffic images,” IEEE Int’l Conf. On Networking, Sensing and Control,vol 1,pp.649 – 654, 2004.
[Wei01] Wei Wu; Zhang QiSen; Wang Mingjun ,“A method of vehicle classification using models and neural networks, ” Vehicular Technology Conf. of IEEE VTS 53rd ,vol 4, pp.3022-3026, 2001.
[蔡04] 即時車種分類與計數
國立台灣師範大學 資訊教育研究所 蔡宗諭 2004
國家圖書館全國博碩士論文 系統編號: 092NTNU0395001
[曾02] 西濱快速公路之車流特性設計
九一年道路交通安全與執法研討會