簡易檢索 / 詳目顯示

研究生: 林鑫蓉
Lin, Shin-Rung
論文名稱: 摻雜錳全無機鈣鈦礦奈米晶體透過磁場增強光催化二氧化碳還原反應效率
Enhanced the Efficiency of Photocatalytic CO2 Reduction Reaction through Magnetic Field with Mn-Doped All-Inorganic CsPbBr3 Perovskite Nanoplates
指導教授: 陳家俊
Chen, Chia-Chun
口試委員: 陳家俊 陳俊維 王迪彥 郭聰榮 李紹先
口試日期: 2021/07/30
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 62
中文關鍵詞: 摻雜錳無機鹵化鈣鈦礦二氧化碳還原反應磁場增強光催化
英文關鍵詞: Manganese-doped inorganic halide perovskite, Carbon dioxide reduction reaction, Magnetic field enhancement, Photocatalytic
DOI URL: http://doi.org/10.6345/NTNU202101045
論文種類: 學術論文
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光催化二氧化碳還原不僅可以減少二氧化碳排放,還可以將二氧化碳轉化為高附加值的燃料(如:CO、CH4),因此,發展一種有效的光催化系統來還原二氧化碳是必要的。具有獨特光電特性(如:高吸收係數、高電荷載流子遷移率、能降低光生電子-電洞對複合率的長電荷擴散長度)的鈣鈦礦光催化劑出現,為高效光催化CO2還原帶來了新的機遇。本篇研究合成CsPbBr3 NPs與摻雜錳CsPbBr3 NPs進行光催化二氧化碳還原反應並透過磁場增強來比較催化效果。摻雜錳離子不僅可以提升材料穩定性還具有磁性特質,主要藉由錳離子的微磁性與外加磁場結合來增強催化反應,使得半導體材料被激發後電荷更有效的分離,來提升光催化二氧化碳還原的效率。本實驗中,先對CsPbBr3 NPs與摻雜錳CsPbBr3 NPs進行光學性質、晶體結構、磁場、形貌等分析,再利用氣相層析儀做光催化分析。最後發現摻雜錳CsPbBr3 NPs在具有外加磁場的情況下,光催化二氧化碳還原出來的CO比無外加磁場的效率多出2倍;皆具有外加磁場時,摻雜錳CsPbBr3 NPs比純的CsPbBr3 NPs還原出5倍的CO及2倍的CH4產率。摻雜錳CsPbBr3 NPs在有外加磁場的光催化二氧化碳還原反應下,促進電荷載流子分離來提高光催化性能有了極大進展。

    Photocatalytic carbon dioxide reduction can not only reduce carbon dioxide emissions, but also convert carbon dioxide into high added value fuels (such as CO, CH4). Therefore, it is necessary to develop an effective photocatalytic system to reduce carbon dioxide. The emergence of Perovskite photocatalyst with unique optical and electrical characteristics (such as high absorption coefficient, high charge carrier mobility, long charge diffusion length can reduce the recombination rate of photogenerated electrons and holes), has brought new opportunities for high-efficiency Photocatalytic carbon dioxide reduction (CO2RR). This study performs photocatalytic reduction of carbon dioxide by synthesizing CsPbBr3 NPs and Mn-doped CsPbBr3 NPs and the enhancement of the magnetic field on the reaction system to compare the catalytic effect. Doping with manganese ions can not only improve the stability of the material, but also has magnetic properties. The micromagnetism of manganese ions reacts with the enhancement of the applied magnetic field, so that the charge of the semiconductor material is more effectively separated after being excited, thereby improving the efficiency of photocatalytic carbon dioxide reduction. In this experiment, first analyze the optical properties, crystal structure, magnetic field, morphology of CsPbBr3 NPs and Mn-doped CsPbBr3 NPs, and then use gas chromatograph for photocatalytic analysis. Finally, it find that with an external magnetic field, the photocatalytic CO2RR of CO from the Mn-doped CsPbBr3 NPs is 2 times more efficient than that without an external magnetic field;When all of them have an external magnetic field, compared with pure CsPbBr3 NPs, Mn-doped CsPbBr3 NPs produces 5 times more CO and 2 times more CH4. Mn-doped CsPbBr3 NPs has made great progress in promoting the separation of charge carriers and improving the photocatalytic performance under the photocatalytic CO2RR with an external magnetic field.

    目錄 誌謝 I 摘要 II Abstract III 目錄 V 表目錄 VIII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 鈣鈦礦之基本結構 2 1-2-1 鈣鈦礦之結構多樣性 4 1-2-2 鈣鈦礦之基本性質 9 1-2-3 鈣鈦礦之發展與應用 11 第二章 文獻回顧與研究動機 16 2-1 光催化 16 2-2 光催化的種類 18 2-2-1 光催化產氫反應(Photocatalytic Hydrogen Evolution Reaction) 18 2-2-2 光催化二氧化碳還原反應(Photocatalytic CO2 Reduction) 21 2-3 外加磁場增強催化效果 25 2-4 研究動機 27 2-5 摻雜錳銫鉛鹵素鈣鈦礦 28 第三章 儀器設備 30 3-1 紫外光/可見光/近紅外光光譜儀(UV) 30 3-2 螢光光譜儀(PL) 31 3-3 X-ray粉末繞射儀 (XRD) 32 3-4 電子順磁共振光譜儀 (EPR) 33 3-5 穿透式電子顯微鏡 (TEM) 34 3-6 掃描穿透式電子顯微鏡 (STEM) 35 3-7 時間解析螢光光譜儀 (TRPL) 36 3-8 定量分析(ICP) 36 3-9 氣相層析儀(GC–MS) 37 3-10 移動式顯微拉曼光譜(Mobile Raman Microscope) 38 第四章 實驗藥品及步驟 39 4-1 實驗藥品 39 4-2 實驗步驟 40 4-2-1 鈣鈦礦CsPbBr3之合成步驟 40 4-2-2 摻雜錳鈣鈦礦Mn doped CsPbBr3之合成步驟 41 第五章 結果與討論 42 5-1 有/無摻雜錳鈣鈦礦結構分析 42 5-1-1 有/無摻雜錳鈣鈦礦TEM及HR-TEM圖 42 5-1-2 有/無摻雜錳鈣鈦礦STEM圖 44 5-1-3 有/無摻雜錳鈣鈦礦X-光粉末繞射圖 45 5-2 有/無摻雜錳鈣鈦礦光學性質分析 46 5-2-1 有/無摻雜錳鈣鈦礦吸收與螢光光譜圖比較 46 5-3 有/無摻雜錳鈣鈦礦電子順磁共振及元素定量分析 47 5-4 光催化二氧化碳還原反應示意圖 48 5-4-1 有/無摻雜錳鈣鈦礦光催化CO2RR分析 49 5-4-2 鉛鹵素鈣鈦礦透過磁場比較光催化CO2RR分析 51 5-4-3 摻雜錳鉛鹵素鈣鈦礦透過磁場比較光催化CO2RR分析 52 5-5 光催化二氧化碳還原反應產率統整表 53 5-6 有/無摻雜錳鈣鈦礦磁場增強探討 54 5-7 有/無摻雜錳鈣鈦礦時間解析螢光光譜圖探討 55 第六章 結論與未來展望 56 參考文獻 57

    1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
    2. Akkerman, Q. A.; Manna, L., What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5 (2), 604-610.
    3. Zhu, P.; Zhu, J., Low‐Dimensional Metal Halide Perovskites and Related Optoelectronic Applications. InfoMat. 2020, 2 (2), 341-378.
    4. Ahmad, S.; Guo, X., Rapid Development in Two-Dimensional Layered Perovskite Materials and Their Application in Solar Cells. Chinese Chemical Letters 2018, 29 (5), 657-663.
    5. Quan, L. N.; Yuan, M.; Comin, R.; Voznyy, O.; Beauregard, E. M.; Hoogland, S.; Buin, A.; Kirmani, A. R.; Zhao, K.; Amassian, A.; Kim, D. H.; Sargent, E. H., Ligand-Stabilized Reduced-Dimensionality Perovskites. J. Am. Chem. Soc. 2016, 138 (8), 2649-55.
    6. Chakraborty, R.; Nag, A., Dielectric Confinement for Designing Compositions and Optoelectronic Properties of 2D Layered Hybrid Perovskites. Phys. Chem. Chem. Phys. 2021, 23 (1), 82-93.
    7. Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J., Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. Energy & Environmental Science 2014, 7 (3).
    8. Eperon, G. E.; Ginger, D. S., B-Site Metal Cation Exchange in Halide Perovskites. ACS Energy Letters 2017, 2 (5), 1190-1196.
    9. Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S. F., Two-Inch-Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization. Adv. Mater. 2015, 27 (35), 5176-83.
    10. Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S., Band-Gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process. J. Mater. Chem. A 2014, 2 (24), 9221-9225.
    11. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett. 2013, 13 (4), 1764-9.
    12. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2013, 117 (27), 13902-13913.
    13. Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L., Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119 (5), 3296-3348.
    14. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15 (6), 3692-6.
    15. Tong, Y.; Bladt, E.; Ayguler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J., Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angew. Chem. Int. Ed. Engl. 2016, 55 (44), 13887-13892.
    16. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    17. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-7.
    18. Huang, W.; Sadhu, S.; Ptasinska, S., Heat- and Gas-Induced Transformation in CH3NH3PbI3 Perovskites and Its Effect on the Efficiency of Solar Cells. Chemistry of Materials 2017, 29 (19), 8478-8485.
    19. Mehrabian, M.; Dalir, S.; Mahmoudi, G.; Miroslaw, B.; Babashkina, M. G.; Dektereva, A. V.; Safin, D. A., A Highly Stable All‐Inorganic CsPbBr3 Perovskite Solar Cell. European Journal of Inorganic Chemistry 2019, 2019 (32), 3699-3703.
    20. Faheem, M. B.; Khan, B.; Feng, C.; Farooq, M. U.; Raziq, F.; Xiao, Y.; Li, Y., All-Inorganic Perovskite Solar Cells: Energetics, Key Challenges, and Strategies toward Commercialization. ACS Energy Letters 2019, 5 (1), 290-320.
    21. Feng, W.; Lin, K.; Li, W.; Xiao, X.; Lu, J.; Yan, C.; Liu, X.; Xie, L.; Tian, C.; Wu, D.; Wang, K.; Wei, Z., Efficient All-Inorganic Perovskite Light-Emitting Diodes Enabled by Manipulating the Crystal Orientation. Journal of Materials Chemistry A 2021, 9 (17), 11064-11072.
    22. Deng, W.; Fang, H.; Jin, X.; Zhang, X.; Zhang, X.; Jie, J., Organic–Inorganic Hybrid Perovskite Quantum Dots for Light-Emitting Diodes. Journal of Materials Chemistry C 2018, 6 (18), 4831-4841.
    23. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D.; Hanusch, F.; Bein, T.; Snaith, H. J.; Friend, R. H., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol 2014, 9 (9), 687-92.
    24. Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C.; Li, W.; Liu, X.; Lu, Y.; Kirman, J.; Sargent, E. H.; Xiong, Q.; Wei, Z., Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 Per cent. Nature 2018, 562 (7726), 245-248.
    25. Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y.-J.; Ohisa, S.; Kido, J., Anion-Exchange Red Perovskite Quantum Dots with Ammonium Iodine Salts for Highly Efficient Light-Emitting Devices. Nature Photonics 2018, 12 (11), 681-687.
    26. Cao, Y.; Wang, N.; Tian, H.; Guo, J.; Wei, Y.; Chen, H.; Miao, Y.; Zou, W.; Pan, K.; He, Y.; Cao, H.; Ke, Y.; Xu, M.; Wang, Y.; Yang, M.; Du, K.; Fu, Z.; Kong, D.; Dai, D.; Jin, Y.; Li, G.; Li, H.; Peng, Q.; Wang, J.; Huang, W., Perovskite Light-Emitting Diodes Based on Spontaneously Formed Submicrometre-Scale Structures. Nature 2018, 562 (7726), 249-253.
    27. Li, Z.; Chen, Z.; Yang, Y.; Xue, Q.; Yip, H. L.; Cao, Y., Modulation of Recombination Zone Position for Quasi-Two-Dimensional Blue Perovskite Light-Emitting Diodes with Efficiency Exceeding 5%. Nat. Commun. 2019, 10 (1), 1027.
    28. Wang, H.; Zhang, X.; Wu, Q.; Cao, F.; Yang, D.; Shang, Y.; Ning, Z.; Zhang, W.; Zheng, W.; Yan, Y.; Kershaw, S. V.; Zhang, L.; Rogach, A. L.; Yang, X., Trifluoroacetate Induced Small-Grained CsPbBr3 Perovskite Films Result in Efficient and Stable Light-Emitting Devices. Nat. Commun. 2019, 10 (1), 665.
    29. Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S., All-Inorganic Cesium Lead Halide Perovskite Nanocrystals for Photodetector Applications. Chem. Commun.2016, 52 (10), 2067-70.
    30. Shoaib, M.; Zhang, X.; Wang, X.; Zhou, H.; Xu, T.; Wang, X.; Hu, X.; Liu, H.; Fan, X.; Zheng, W.; Yang, T.; Yang, S.; Zhang, Q.; Zhu, X.; Sun, L.; Pan, A., Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors. J. Am. Chem. Soc. 2017, 139 (44), 15592-15595.
    31. Gong, M.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Z., High-Performance All-Inorganic CsPbCl3 Perovskite Nanocrystal Photodetectors with Superior Stability. ACS Nano. 2019, 13 (2), 1772-1783.
    32. Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A., Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters 2020, 5 (4), 1107-1123.
    33. Wang, J.; Liu, J.; Du, Z.; Li, Z., Recent Advances in Metal Halide Perovskite Photocatalysts: Properties, Synthesis and Applications. Journal of Energy Chemistry 2021, 54, 770-785.
    34. Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L., Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO2 Reduction. Chemistry 2017, 23 (40), 9481-9485.
    35. Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H.-Y.; Nam, K. T., Photocatalytic Hydrogen Generation from Hydriodic Acid Using Methylammonium Lead Iodide in Dynamic Equilibrium with Aqueous Solution. Nature Energy 2016, 2 (1).
    36. Zhao, Z.; Wu, J.; Zheng, Y.-Z.; Li, N.; Li, X.; Tao, X., Ni3C-Decorated MAPbI3 as Visible-Light Photocatalyst for H2 Evolution from HI Splitting. ACS Catalysis 2019, 9 (9), 8144-8152.
    37. Wang, H.; Wang, X.; Chen, R.; Zhang, H.; Wang, X.; Wang, J.; Zhang, J.; Mu, L.; Wu, K.; Fan, F.; Zong, X.; Li, C., Promoting Photocatalytic H2 Evolution on Organic–Inorganic Hybrid Perovskite Nanocrystals by Simultaneous Dual-Charge Transportation Modulation. ACS Energy Letters 2018, 4 (1), 40-47.
    38. Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y., A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139 (16), 5660-5663.
    39. Pashaei, B.; Shahroosvand, H.; Ameri, M.; Mohajerani, E.; Nazeeruddin, M. K., A Sequential Condensation Route as a Versatile Platform for Low Cost and Efficient Hole Transport Materials in Perovskite Solar Cells. Journal of Materials Chemistry A 2019, 7 (38), 21867-21873.
    40. Wang, X.; Wang, H.; Zhang, H.; Yu, W.; Wang, X.; Zhao, Y.; Zong, X.; Li, C., Dynamic Interaction between Methylammonium Lead Iodide and TiO2 Nanocrystals Leads to Enhanced Photocatalytic H2 Evolution from HI Splitting. ACS Energy Letters 2018, 3 (5), 1159-1164.
    41. Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R., Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO2 Reduction. Angew. Chem. Int. Ed. Engl. 2018, 57 (41), 13570-13574.
    42. Xu, Y.-F.; Yang, M.-Z.; Chen, H.-Y.; Liao, J.-F.; Wang, X.-D.; Kuang, D.-B., Enhanced Solar-Driven Gaseous CO2 Conversion by CsPbBr3 Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials 2018, 1 (9), 5083-5089.
    43. Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S. M.; Diau, E. W., Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface. J. Am. Chem. Soc. 2019, 141 (51), 20434-20442.
    44. Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M., A Critical Review on TiO2 Based Photocatalytic CO2 Reduction System: Strategies to improve efficiency. Journal of CO2 Utilization 2018, 26, 98-122.
    45. Martial, Z.; Issa, Z.; Boubacar, S.; Mahamadi, S.; Sanna, T.; Dieudonné Joseph, B., The Effect of Magnetic Field on the Efficiency of a Silicon Solar Cell under an Intense Light Concentration. Advances in Science and Technology Research Journal 2017, 11 (2), 133-138.
    46. Wang, H.; Lei, J.; Gao, F.; Yang, Z.; Yang, D.; Jiang, J.; Li, J.; Hu, X.; Ren, X.; Liu, B.; Liu, J.; Lei, H.; Liu, Z.; Liu, S. F., Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells. ACS Appl Mater Interfaces 2017, 9 (26), 21756-21762.
    47. Li, J.; Pei, Q.; Wang, R.; Zhou, Y.; Zhang, Z.; Cao, Q.; Wang, D.; Mi, W.; Du, Y., Enhanced Photocatalytic Performance through Magnetic Field Boosting Carrier Transport. ACS Nano 2018, 12 (4), 3351-3359.
    48. Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R., Direct magnetic enhancement of Electrocatalytic Water Oxidation in Alkaline Media. Nature Energy 2019, 4 (6), 519-525.
    49. Gao, W.; Lu, J.; Zhang, S.; Zhang, X.; Wang, Z.; Qin, W.; Wang, J.; Zhou, W.; Liu, H.; Sang, Y., Suppressing Photoinduced Charge Recombination via the Lorentz Force in a Photocatalytic System. Adv. Sci. 2019, 6 (18), 1901244.
    50. Mir, W. J.; Mahor, Y.; Lohar, A.; Jagadeeswararao, M.; Das, S.; Mahamuni, S.; Nag, A., Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Downconversion Emission. Chemistry of Materials 2018, 30 (22), 8170-8178.
    51. Parobek, D.; Dong, Y.; Qiao, T.; Son, D. H., Direct Hot-Injection Synthesis of Mn-Doped CsPbBr3 Nanocrystals. Chemistry of Materials 2018, 30 (9), 2939-2944.
    52. Zou, S.; Liu, Y.; Li, J.; Liu, C.; Feng, R.; Jiang, F.; Li, Y.; Song, J.; Zeng, H.; Hong, M.; Chen, X., Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. J. Am. Chem. Soc. 2017, 139 (33), 11443-11450.
    53. Beaulac, R.; Schneider, L.; Archer, P. I.; Bacher, G.; Gamelin, D. R., Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots. Science 2009, 325 (5943), 973-6.
    54. Bai, D.; Zhang, J.; Jin, Z.; Bian, H.; Wang, K.; Wang, H.; Liang, L.; Wang, Q.; Liu, S. F., Interstitial Mn2+-Driven High-Aspect-Ratio Grain Growth for Low-Trap-Density Microcrystalline Films for Record Efficiency CsPbI2Br Solar Cells. ACS Energy Letters 2018, 3 (4), 970-978.
    55. Wang, Q.; Zhang, X.; Jin, Z.; Zhang, J.; Gao, Z.; Li, Y.; Liu, S. F., Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells. ACS Energy Letters 2017, 2 (7), 1479-1486.
    56. He, W.; Zhang, Q.; Qi, Y.; Xiong, J.; Ray, P.; Pradhan, N. R.; Shahbazyan, T. V.; Han, F.; Dai, Q., Luminescence Properties of CsPbBr3:Mn Nanocrystals. Journal of Nanoparticle Research 2021, 23 (4).
    57. Pan, Y.; Nilges, M. J., Electron Paramagnetic Resonance Spectroscopy: Basic Principles, Experimental Techniques and Applications to Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry 2014, 78 (1), 655-690.
    58. Bekenstein, Y.; Koscher, B. A.; Eaton, S. W.; Yang, P.; Alivisatos, A. P., Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. J. Am. Chem. Soc. 2015, 137 (51), 16008-11.
    59. Yang, Q.; Du, J.; Nie, X.; Yang, D.; Bian, L.; Yang, L.; Dong, F.; He, H.; Zhou, Y.; Yang, H., Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis 2021, 11 (3), 1242-1247.
    60. Kong, Z.-C.; Liao, J.-F.; Dong, Y.-J.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y., Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO2 Reduction. ACS Energy Letters 2018, 3 (11), 2656-2662.
    61. Shyamal, S.; Dutta, S. K.; Pradhan, N., Doping Iron in CsPbBr3 Perovskite Nanocrystals for Efficient and Product Selective CO2 Reduction. J. Phys. Chem. Lett. 2019, 10 (24), 7965-7969.
    62. Jiang, Y.; Liao, J.-F.; Chen, H.-Y.; Zhang, H.-H.; Li, J.-Y.; Wang, X.-D.; Kuang, D.-B., All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic CO2 Reduction. Chem. 2020, 6 (3), 766-780.

    無法下載圖示 本全文未授權公開
    QR CODE