簡易檢索 / 詳目顯示

研究生: 詹玉貞
Yue-Jen Jan
論文名稱: 波利亞的解題步驟對國中數學資優生學習幾何證明成效之研究
A Study of the Performance of Polya's Problem Solving Heuristics on a Group of Seventh and Eighth Grade Mathematically Gifted Students in Learning Geometry Proofs
指導教授: 譚克平
Tam, Hak-Ping
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 135
中文關鍵詞: 波利亞的解題步驟幾何證明國中數學資優生
英文關鍵詞: Polya's problem solving heuristics, Geometry proof, junior high school mathematically gifted students
論文種類: 學術論文
相關次數: 點閱:288下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所編排的幾何實驗教材,主要是按照波利亞的解題四步驟為原則而設計,其目的是想了解波利亞的方法是否對教導學生學習幾何證明有所幫助,亦即從了解題意、分析題目、由已知條件找到可供解題的線索、擬定證明的計畫、到實現計畫完整地把題目證明出來。本研究探討的是藉由這樣的教材編排對於學生解幾何證明題的表現是否有所提升。本研究另一個目的是想教導學生用兩欄式撰寫幾何證明寫法,並探討這種方式是否對學生寫幾何證明有幫助。本研究的研究對象為21名國中數學資優生,當中大部分曾代表台灣參加國際性的中小學數學競賽。本研究將這21名學生根據他們在前測的表現分成三組:「高證明能力組」、「中證明能力組」及「低證明能力組」。本研究在資料分析中所使用的評量工具有全等三角形問題(I)及(II)、圓的問題、共邊定理問題、共角定理問題、塞瓦定理問題、訪談問題(I)及(II)等八個問題。
    從資料分析看來,在「了解題意」階段,這群學生在本研究教學實驗末了約有85%的學生能從幾何證明題的文字敘述中,掌握到題目的已知條件及所要求證的部分為何,其餘的學生可能了解題意,但對於題目的已知條件及所要求證的部分比較無法清楚地掌握。而全部的學生都能由題目的敘述中把題目的圖形畫出來,並且標上適當的符號。
    在「擬定計劃、執行計劃」階段,本研究根據波利亞的解題四步驟為原則而設計的教材編排,對於高證明能力組的學生似乎幫助不太明顯;然而,對於中證明能力組及低證明能力組的學生卻比較有幫助。其原因可能是因為:高證明能力組的學生本身的證明能力就不錯,且也較容易配合教材編排的方式,所以從第二節課開始進行幾何證明時,便有不錯的表現。而中證明能力組及低證明能力組的學生,則需要教師在教學活動期間不時地提醒學生作幾何證明題時可先嘗試擬定計劃,再將所擬定的計劃正確地執行出來,這需要教師不斷地提醒及鼓勵學生,才能使學生不僅知道如何去擬定計劃,進而執行計劃。且教師經常提醒與鼓勵,可使學生自然而然地養成擬定計劃、執行計劃的解題習慣。而且,從資料分析中也發現,這21名學生中,大部分的學生若是依照本研究所設計的波利亞解題四步驟為一般性原則解幾何證明題者,其證明步驟大致上正確;然若沒有依照本研究所設計的波利亞解題四步驟為一般性原則解幾何證明題者,其證明步驟有誤。而其中只有1、2位學生沒有依照本研究所設計的波利亞解題四步驟為一般性原則解幾何證明題者,其證明步驟卻正確。由此看來,若要幫助學生能正確地寫幾何證明,教師需要反覆地提醒學生此一般性的解題原則。
    至於「回顧」階段,本研究想要了解學生在經過畫圖、擬定計劃、證明等步驟後,是否能根據題目的敘述,將圖形作適當的延伸。而由學生作答的情形可以發現:在共邊定理的「回顧」中,11位學生具有回顧的能力,其中,只有1位學生不僅把不同於題目的圖形畫出來,並且還詳加證明;而其餘的學生都只是把不同於題目的圖形畫出,證明部分比較簡略甚至沒有證明。在共角定理中,17位具有回顧能力的學生,不僅能畫出與題目不同的圖形,還能加以證明。
    從學生第二節課學習寫幾何證明的情形可發現,學生以「兩欄式」撰寫幾何證明題時,所感到的困難,有以下幾點:
    1.理由部分不知道該如何寫。
    2.引用前面證明步驟所得的結果時,理由部分不知道該如何寫。
    3.在寫幾何證明時,對於理由部分的陳述,並不覺得有必要。
    而經過本教學實驗後,學生在這幾方面的困難漸漸有改善。同時,這群學生經過本教學實驗後,幾何證明的寫法比較符合數學邏輯且證明步驟的正確性也有所提升。
    根據以上的研究發現與心得,本研究建議教師宜在教學過程中,讓學生體會到了解題意、擬定計劃、執行計劃、回顧等階段的重要性。且在課堂上宜讓學生有機會思考,同時教師應適時且不落痕跡地幫助學生,使學生能將波利亞的四個解題步驟的一般性原則運用在平時解幾何證明題中。至於未來的研究方向,可考慮將研究時間延長,以及考慮學習風格、後設認知等因素作更深入的探討。

    The geometry teaching material in this study is arranged mainly according to the Polya's 4-step problem solving heuristics with a purpose to understand if Polya's heuristics help guiding students in learning geometry proofs how to start from understanding the question, analyzing it, finding clues to answer from the given conditions, devising a plan to prove and completing the whole proof. This study wants to know if the arrangement of teaching material does upgrade students' performance in proving geometry. Another purpose for this study is to guide students in applying two-column writing as they prove geometric questions and to see if this style help their performance. I have 21 top junior high students in math as my study object. Most of them have represented Taiwan in international math competitions. They are divided, according to their proving competence showed in pre-tests, into 3 groups: high, middle and low. The measuring tools used for data analysis in this study are eight questions regarding the congruent triangles (I) and (II), circles, the coedged theorem, the coangular theorem, the Ceva's theorem and interview (I) and (II).
    Gathered from the data analysis, in the stage of "understanding questions," 85% of the students can grasp the given conditions and respond to the core geometric statement. The remaining 15% have no problem in understanding but have troubles in using the given data for proving the key geometric concept. However all of them can draw the diagram expressed in the question statement and mark proper places.
    In the stage of devising plan and executing it, the Polya's 4-step problem solving heuristics does not help the high level students very much. However, to the middle and low level students, it gives much help. The high level students are strong in proving and adapt to the arrangement of the teaching materials without much efforts. They have good performance from the second class on. For the middle and low level students, their teacher has to remind them constantly of how to devise a feasible plan and execute it accurately when they proceed to prove a geometric concept. They depend very much on the teacher's frequent encouragement and speaking to form such a problem-solving habit. Besides, from the findings, most of the 21 students who follow Polya's heuristics are correct in their proving steps, while some that do not follow are wrong in their steps. Only one or two students remain correct in their proving steps without following Polya's heuristics. I gathered that if a teacher wants to help students with correct geometry proofs, s/he has to repeatedly remind students of this heuristics.
    In the "reflecting" stage, this study intends to see how students extend their diagrams properly according to the question statement, after drawing, devising a plan and proving. From findings on their work, in "reflecting" on the coedged theorem, there are 11 students has such ability and one of them can even draw different figures with sufficient explanations responding to various questions. While the remaining students only mark out the difference with simple, or even little explanations. On co-angular theorem, 17 students have such reflecting power who are able to draw pictures different from the question statement and give proper explanation.
    Findings in their second class in learning geometry proving show that students have following difficulties in applying "two column" writing geometry proofs.
    1.Don't know how to write the reasons.
    2.In quoting the previous proofs, they don't know how to write the reasons.
    3.In writing the geometry proofs, they don't feel necessary to write the reasons.
    After this teaching experiment, students make much progress in this area. At the same time, their geometry proof writing become more logical in math with correct proving steps than before.
    Based on the findings and after-thoughts, this study suggests that teachers make students understand the importance of the stages in understanding the questions, devising a plan, executing the plan and reflecting in their teaching. Students should have time to think in class, while the teacher should help them timely in applying Polya's 4-step problem solving heuristics in their geometry proofs.
    For the future study, the program should have longer time frame and take different factors such as various learning styles, meta-cognition etc into consideration for a deep understanding.

    第壹章 緒論………………………………………..1 第一節 研究動機…………………………………………...1 第二節 研究目的…………………………………………...4 第三節 研究問題…………………………………………...5 第四節 名詞界定…………………………………………...6 第五節 研究之限制………………………………………...9 第貳章 文獻探討…………………………………...10 第一節 數學證明觀………………………………………10 第二節 幾何證明之學習…………………………………11 第三節 van Hiele幾何思考層次…………………………13 第四節 幾何證明的教學………………………………….19 第參章 研究方法……………………………………21 第一節 研究設計…………………………………………21 第二節 研究對象…………………………………………22 第三節 研究資源與工具之設計…………………………23 第四節 研究步驟與過程…………………………………25 第五節 資料處理…………………………………………27 第肆章 資料分析……………………………………28 第一節 學生解題步驟之整體分析………………………...30 第二節 學生以「兩欄式」撰寫幾何證明之分析…………84 第三節 針對學生解幾何證明題之van Hiele幾何思考層次 作分析……………………………………………102 第伍章 研究結果的討論與建議…………………104 第一節 研究結果的討論…………………………………104 第二節 教學上的建議……………………………………112 參考文獻……………………………………………..113 中文部份……………………………………………………..113 英文部份……………………………………………………..114 附錄…………………………………………………..117 附錄一 全等三角形問題(I)………………………………117 附錄二 全等三角形問題(II)……………………………...119 附錄三 教導所用的問題…………………………………121 附錄四 圓的問題…………………………………………122 附錄五 共邊定理的問題…………………………………123 附錄六 共角定理的問題…………………………………127 附錄七 塞瓦定理的問題…………………………………130 附錄八 訪談問題(I)………………………………………134 附錄九 訪談問題(II)……………………………………...135

    中文部分
    九章出版社編輯部編(G. Polya著) (民78):數學發現。台北:九章出版社。
    王郁華(民83):台灣南區中學數學科教師信念之研究。國立高雄師範大學數學
    教育研究所未出版之碩士論文。
    李心煽、王日爽、李日堯譯(G. Polya著) (民81):數學與猜想。台北:九章出版
    社。
    林福來譯(Skemp, R. R.專題演講) (民72):新智力模式在數學學習上的應用。國
    立台灣師範大學數學系。
    林福來等(民84):數學證明的瞭解(II)。國科會專題研究計畫期末報告。
    陳姿妍(民85):中學生處理有輔助線需求之幾何證明的錯誤分析。國立台灣師
    範大學數學研究所未出版之碩士論文。
    黃家鳴(1995):數學證明與日常生活論證。輯於蕭文強主編:香港數學教育的
    回顧與前瞻。香港:香港大學出版。
    閻育蘇譯(G. Polya著) (民82):怎樣解題。台北:九章出版社。
    張家生、伍宇文譯(Daniel Solow著) (民78) :如何精進數學技巧。台北:第三
    波。
    九章出版社編輯部編(民76):解題思路─怎樣作證明題。台北:九章出版社。
    黃毅英(民86):邁向大眾數學的數學教育。台北:九章出版社。
    周武德(民82):我國國中二年級學生在幾何方面之van Hiele思考模式(I)。國科
    會專題研究計畫成果報告。
    謝淡宜(民87):小學五年級數學資優生與普通生數學解題時思考歷程之比較。
    台南師院學報,31期,p.p.225-268。
    英文部分
    Alibert, D., & Thomas, M. (1991). Research mathematical proof. In D. Tall(Ed.),
    Advanced mathematical thinking (pp. 215-230).
    Battista, M. T., & Clements, D. H. (1995). Geometry and proof. The mathematics
    teacher, 88 (1), 48-54.
    Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of
    development in geometry. Journal for research in mathematics education, 17,
    31-48.
    Daniel Solow (1991). How to read and do proofs: an introduction to mathematical
    thought processes. New York: Wiley.
    Fuys, D., Geddes, D., & Tischler, R. (1988). The van Hiele model of thinking in
    geometry among adolescents. American: The National Council of Teachers of
    Mathematics.
    Gutierrez, A., Jaime, A., & Fortuny, J. M. (1991). An alternative paradigm to evaluate
    the acquistition of the van Hiele levels. Journal for research in mathematics
    education, 22 (3), 237-251.
    Gutierrez, A., Jaime, A. (1988). Globality versus Locality of the van Hiele levels of
    Geometric reasoning. University of Valencia, Spain.
    Hanna, G. (1989). More than formal proof. For the learning of mathematics, 9, 20-23.
    Hanna, G. (1990). Some pedagogical aspects of proof. Educational studies in
    mathematics, 24 (4).
    Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J.
    Kilpatrick (Eds.), Mathematics and cognition (pp. 70-95). New York: Cambridge
    University Press.
    Han T. (1986). The effects on achievement and attitude of a standard geometry
    textbook and a textbook Consistent with the van Hiele theory.(University)
    Microfilms DA 8628106.
    Hanna, G., & Jahnke, H. N. (Eds.). (1993). Aspects of proof. Educational studies in
    mathematics, 24 (4).
    Hoffer, A. (1981). Geometry is more than proof. Mathematics teacher, 74(1), 11-18.
    Moore, R. C. (1994). Making the transition to formal proof. Educational studies in
    mathematics, 27, 249-266.
    National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation
    Standards for School Mathematics. Reston, Va..: NCTM.
    Senk, S. L. (1985). How well do students write geometry proofs? The mathematics
    teacher, 78 (6), 448-456.
    Senk, S. L. (1989). van Hiele levels and achievement in writing geometry proofs.
    Journal for research in mathematics.
    Usiskin, Z. (1982). van Hiele levels and achievement in secondary school geometry.
    (Final Report of the Cognitive Development and Achievement in Secondary
    School Geometry Project). Chicago, IL: University of Chicago,. Department of Education. (ERIC Reproduction Service No. ED 220 288).

    QR CODE