研究生: |
郭怡伶 Kuo, Yi-Lin |
---|---|
論文名稱: |
單次性不同認知要求運動對國小孩童抑制控制之影響 The Effects of Single Bouts Exercise with Different Cognitive Demands on Inhibitory Control in Elementary School Children |
指導教授: |
洪聰敏
Hung, Tsung-Min |
口試委員: |
張育愷
Chang, Yu-Kai 黃崇儒 Huang, Chung-Ju 洪聰敏 Hung, Tsung-Min |
口試日期: | 2022/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系運動科學碩士在職專班 Continuing Education Master's Program of Sports Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 單次性運動 、認知要求 、國小孩童 、抑制控制 |
英文關鍵詞: | single bouts exercise, cognitive demands, inhibitory control, elementary school children |
DOI URL: | http://doi.org/10.6345/NTNU202201397 |
論文種類: | 學術論文 |
相關次數: | 點閱:157 下載:24 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目旨在探討單次性不同認知要求運動對國小孩童抑制控制之影響。以新北市新店區某國小之有運動習慣學生為研究對象,年齡介於 10 至 12 歲,共 26 名。本研究為組內設計方式,比較20分鐘單次性高認知要求運動、低認知要求運動與控制情境對孩童抑制控制表現之影響,受試者參與各實驗情境之順序以次序平衡隨機分派進行,以旁側干擾作業 (flanker task) 為認知測驗。以二因子變異數重複量數分析反應時間與正確率之改變量;另外,以單因子重複量數分析 Flanker effect 之反應時間。結果顯示,在反應正確率部分,在一致情境中,低認知要求運動情境顯著優於高認知要求運動情境,而高認知要求運動情境及低認知運動情境分別與控制情境無顯著差異;不一致情境中,三個情境並無顯著差異。在反應時間部分,僅在不一致情境中,高認知要求運動情境優於低認知要求運動情境。反應時間之 Flanker effect (不一致減去一致) 部分,高認知要求運動情境與低認知要求運動情境分別與控制情境沒有顯著差異,但高認知要求運動情境顯著優於低認知要求運動情境。整體而言,本研究發現認知要求高的運動對於孩童的急性認知效益可能反應在需要較高的抑制控制要求情境下,然而其效果仍需更多後續研究來確認。
The purpose of this research was to explore the impact of a single bout of exercise with different cognitive demanding on the inhibitory control of children. A total of 26 students aged between 10 and 12 years old, who regularly participated in intermural sports from an elementary school in Xindian District, New Taipei City, were recruited. A within-subjects design was used to compare the effects of a single bout of high cognitive demand exercise (HE), low cognitive demand exercise (LE), and active control (AC) on the inhibitory control performance. The order in which the subjects performed the three experiment sessions were counterbalanced and randomized, and inhibition control was measured by the flanker task. Two-way repeated measures ANOVA was used to analyze the variation of reaction time and accuracy; one-way repeated measures ANOVA was used to analyze the reaction time of Flanker effect. The results showed that, in the consistent condition of the flanker task, LE resulted in higher accurate than HE, where as HE and LE were not significantly different from AC; in the inconsistent situation, LE, HE and AC have no significant difference. On the other hand, HE resulted in shorter reaction time than LE only in inconsistent condition. As for the Flanker effect (interference scores) of reaction time, despite no significant difference were observed between HE and LE and AC, HE was significantly better than LE. Overall, this study provides some support for the extra benefit of acute bout of cognitive demanding exercise on the response speed of taks that require higher inhibitory control. Nevertheless, more follow-up studies are needed to confirm the effect.
王駿濠, 張哲千, 梁衍明, 邱文聲, 洪蘭, 曾志朗, & 阮啟弘. (2012). 運動對孩童認知功能及學業表現的影響: 文獻回顧與展望. 教育科學研究期刊, 57(2), 65-94.
吳正奇. (2005). 國內合球運動發展之我見. 輔仁大學體育學刊(4), 376-382.
張育愷, & 陳豐慈. (2011). 急性有氧健身運動對執行功能影響之探討-以施測時間點與神經心理測驗的視角. 臺灣運動心理學報(18), 1-16.
張銘麟, 廖宏哲, & 聶喬齡. (2011). 陌生的亞運項目-卡巴迪. 大專體育(114), 5-12.
陳豐慈, & 張育愷. (2012). 阻力健身運動對老人認知功能影響之回顧. 臺灣運動心理學報, 12(2), 37-56.
曾竣瑋, 洪巧菱, 趙曉涵, 洪聰敏, & 王鶴森. (2019). 不同急性運動類型對 BDNF 及干擾控制之影響. 體育學報, 52(3), 307-318.
Agostino, A., Johnson, J., & Pascual-Leone, J. (2010). Executive functions underlying multiplicative reasoning: Problem type matters. Journal of experimental child psychology, 105(4), 286-305.
Allan, N. P., Hume, L. E., Allan, D. M., Farrington, A. L., & Lonigan, C. J. (2014). Relations between inhibitory control and the development of academic skills in preschool and kindergarten: a meta-analysis. Developmental psychology, 50(10), 2368.
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of experimental child psychology, 106(1), 20-29.
Arent, S. M., & Landers, D. M. (2003). Arousal, anxiety, and performance: A reexamination of the inverted-U hypothesis. Research quarterly for exercise and sport, 74(4), 436-444.
Bailey, C. E. (2007). Cognitive accuracy and intelligent executive function in the brain and in business. Annals of the New York Academy of Sciences, 1118(1), 122-141.
Baker, S. T., Gjersoe, N. L., Sibielska‐Woch, K., Leslie, A. M., & Hood, B. M. (2011). Inhibitory control interacts with core knowledge in toddlers’ manual search for an occluded object. Developmental Science, 14(2), 270-279.
Ballester, R., Huertas, F., Molina, E., & Sanabria, D. (2018). Sport participation and vigilance in children: Influence of different sport expertise. Journal of Sport and Health Science, 7(4), 497-504.
Barenberg, J., Berse, T., & Dutke, S. (2011). Executive functions in learning processes: do they benefit from physical activity? Educational Research Review, 6(3), 208-222.
Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological bulletin, 121(1), 65.
Basso, J. C., & Suzuki, W. A. (2017). The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plasticity, 2(2), 127-152.
Benzing, V., Heinks, T., Eggenberger, N., & Schmidt, M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PloS one, 11(12), e0167501.
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental review, 30(4), 331-351.
Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental review, 29(3), 180-200.
Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327-336.
Birnbaum, S., Gobeske, K. T., Auerbach, J., Taylor, J. R., & Arnsten, A. F. (1999). A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor mediation in the prefrontal cortex. Biological psychiatry, 46(9), 1266-1274.
Black, J. E., Greenough, W. T., Anderson, B. J., & Isaacs, K. R. (1987). Environment and the aging brain. Canadian Journal of Experimental Psychology, 41, 111.
Blair, C., & Diamond, A. (2008). Biological processes in prevention and intervention: The promotion of self-regulation as a means of preventing school failure. Development and psychopathology, 20(3), 899-911.
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child development, 78(2), 647-663.
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & science in sports & exercise.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological review, 108(3), 624.
Brookman-Byrne, A., Mareschal, D., Tolmie, A. K., & Dumontheil, I. (2018). Inhibitory control and counterintuitive science and maths reasoning in adolescence. PloS one, 13(6), e0198973.
Browne, R. A. V., Costa, E. C., Sales, M. M., Fonteles, A. I., Moraes, J. F. V. N. d., & Barros, J. d. F. (2016). Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents. Revista Paulista de Pediatria, 34, 154-161.
Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience letters, 441(2), 219-223.
Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental neuropsychology, 33(3), 205-228.
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron, 33(2), 301-311.
Cameron, C. E., Brock, L. L., Murrah, W. M., Bell, L. H., Worzalla, S. L., Grissmer, D., & Morrison, F. J. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. Child development, 83(4), 1229-1244.
Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children's theory of mind. Child development, 72(4), 1032-1053.
Casey, B., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends in cognitive sciences, 9(3), 104-110.
Castelli, D. M., & Hillman, C. H. (2012). Physical activity, cognition, and school performance: from neurons to neighborhoods. In Physical Activity Across the Lifespan (pp. 41-63). Springer.
Castelli, D. M., Hillman, C. H., Buck, S. M., & Erwin, H. E. (2007). Physical fitness and academic achievement in third-and fifth-grade students. Journal of Sport and Exercise Psychology, 29(2), 239-252.
Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., Pontifex, M. B., Raine, L. B., Konkel, A., & Hillman, C. H. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain research, 1358, 172-183.
Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., Raine, L. B., Hillman, C. H., & Kramer, A. F. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental neuroscience, 32(3), 249-256.
Chaddock, L., Pontifex, M. B., Hillman, C. H., & Kramer, A. F. (2011). A review of the relation of aerobic fitness and physical activity to brain structure and function in children. Journal of the international Neuropsychological Society, 17(6), 975-985.
Chaddock-Heyman, L., Erickson, K. I., Kienzler, C., Drollette, E. S., Raine, L. B., Kao, S.-C., Bensken, J., Weisshappel, R., Castelli, D. M., & Hillman, C. H. (2018). Physical activity increases white matter microstructure in children. Frontiers in neuroscience, 950.
Chang, Y.-K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain research, 1453, 87-101.
Chen, A.-G., Yan, J., Yin, H.-C., Pan, C.-Y., & Chang, Y.-K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627-636.
Chueh, T.-Y., Huang, C.-J., Hsieh, S.-S., Chen, K.-F., Chang, Y.-K., & Hung, T.-M. (2017). Sports training enhances visuo-spatial cognition regardless of open-closed typology. PeerJ, 5, e3336.
Clark, C. A., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental psychology, 46(5), 1176.
Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in neurosciences, 30(9), 464-472.
Crova, C., Struzzolino, I., Marchetti, R., Masci, I., Vannozzi, G., Forte, R., & Pesce, C. (2014). Cognitively challenging physical activity benefits executive function in overweight children. Journal of sports sciences, 32(3), 201-211.
Delp, M. D., Armstrong, R., Godfrey, D. A., Laughlin, M. H., Ross, C. D., & Wilkerson, M. K. (2001). Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. The Journal of Physiology, 533(3), 849-859.
Diamond, A. (1990). Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching a. Annals of the New York Academy of Sciences, 608(1), 637-676.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child development, 71(1), 44-56.
Diamond, A. (2013). Executive functions. Annual review of psychology, 64, 135.
Diamond, A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Annals of sports medicine and research, 2(1), 1011.
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959-964.
Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental cognitive neuroscience, 18, 34-48.
Doherty, A., & Forés Miravalles, A. (2019). Physical activity and cognition: Inseparable in the classroom. Frontiers in Education,
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Medicine and science in sports and exercise, 48(6), 1197.
Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children's executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178-186.
Ellemberg, D., & St-Louis-Deschênes, M. (2010). The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise, 11(2), 122-126.
Engelhardt, L. E., Harden, K. P., Tucker-Drob, E. M., & Church, J. A. (2019). The neural architecture of executive functions is established by middle childhood. NeuroImage, 185, 479-489.
Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Medicine and science in sports and exercise, 51(6), 1242.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16(1), 143-149.
Ferris, L. T., Williams, J. S., & Shen, C.-L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and science in sports and exercise, 39(4), 728.
Gallotta, M., Emerenziani, G. P., Franciosi, E., Meucci, M., Guidetti, L., & Baldari, C. (2015). Acute physical activity and delayed attention in primary school students. Scandinavian journal of medicine & science in sports, 25(3), e331-e338.
Gallotta, M. C., Guidetti, L., Franciosi, E., Emerenziani, G. P., Bonavolonta, V., & Baldari, C. (2012). Effects of varying type of exertion on children's attention capacity. Medicine and science in sports and exercise, 44(3), 550-555.
Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive function in preschoolers: a review using an integrative framework. Psychological bulletin, 134(1), 31.
Gentile, A. M. (1987). Skill acquisition: Action, movement, and the neuromotor processes. Movement science: Foundations for physical therapy in rehabilitation.
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience, 2(10), 861-863.
Gill, K. L., & Calkins, S. D. (2003). Do aggressive/destructive toddlers lack concern for others? Behavioral and physiological indicators of empathic responding in 2-year-old children. Development and psychopathology, 15(1), 55-71.
Giordano, G., & Alesi, M. (2022). Does Physical Activity Improve Inhibition in Kindergarteners? A Pilot Study. Perceptual and motor skills, 00315125221109216.
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent III, T. F., Herman, D. H., Clasen, L. S., & Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the national Academy of Sciences, 101(21), 8174-8179.
Goleman, D. (1996). Emotional intelligence: Why it can matter more than IQ. Bloomsbury Publishing.
Gomez‐Pinilla, F., Vaynman, S., & Ying, Z. (2008). Brain‐derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. European Journal of Neuroscience, 28(11), 2278-2287.
Griffin, É. W., Mullally, S., Foley, C., Warmington, S. A., O'Mara, S. M., & Kelly, Á. M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & behavior, 104(5), 934-941.
Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: two new school readiness indicators. Developmental psychology, 46(5), 1008.
Grissom, J. B. (2005). Physical fitness and academic achievement. Journal of Exercise Physiology Online, 8(1).
Guerrieri, R., Nederkoorn, C., & Jansen, A. (2007). How impulsiveness and variety influence food intake in a sample of healthy women. Appetite, 48(1), 119-122.
Hardy, C. J., & Rejeski, W. J. (1989). Not what, but how one feels: the measurement of affect during exercise. Journal of Sport and Exercise Psychology, 11(3), 304-317.
Hart, L. A. (1975). How the brain works. Basic Books.
Herholz, K., Buskies, W., Rist, M., Pawlik, G., Hollmann, W., & Heiss, W. (1987). Regional cerebral blood flow in man at rest and during exercise. Journal of neurology, 234(1), 9-13.
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58-65.
Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044-1054.
Hung, C.-L., Tseng, J.-W., Chao, H.-H., Hung, T.-M., & Wang, H.-S. (2018). Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. Journal of Clinical Medicine, 7(10), 301.
Ishihara, T., Sugasawa, S., Matsuda, Y., & Mizuno, M. (2017). The beneficial effects of game-based exercise using age-appropriate tennis lessons on the executive functions of 6–12-year-old children. Neuroscience letters, 642, 97-101.
Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2014). Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Frontiers in psychology, 5, 1473.
Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2015). The effects of qualitatively different acute physical activity interventions in real-world settings on executive functions in preadolescent children. Mental health and physical activity, 9, 1-9.
Janssen, M., Chinapaw, M., Rauh, S., Toussaint, H., Van Mechelen, W., & Verhagen, E. (2014). A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10–11. Mental health and physical activity, 7(3), 129-134.
Jeon, Y. K., & Ha, C. H. (2015). Expression of brain-derived neurotrophic factor, IGF-1 and cortisol elicited by regular aerobic exercise in adolescents. Journal of physical therapy science, 27(3), 737-741.
Kamijo, K., & Abe, R. (2019). Aftereffects of cognitively demanding acute aerobic exercise on working memory. Medicine and science in sports and exercise, 51(1), 153.
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., & Kuroiwa, K. (2004). Differential influences of exercise intensity on information processing in the central nervous system. European journal of applied physiology, 92(3), 305-311.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International journal of psychophysiology, 65(2), 114-121.
Khng, K. H., & Lee, K. (2009). Inhibiting interference from prior knowledge: Arithmetic intrusions in algebra word problem solving. Learning and Individual Differences, 19(2), 262-268.
Koutsandreou, F., Wegner, M., Niemann, C., & Budde, H. (2016). Effects of Motor versus Cardiovascular Exercise Training on Children's Working Memory. Medicine and science in sports and exercise, 48(6), 1144-1152.
Krock, L. P., & Hartung, G. H. (1992). Influence of post-exercise activity on plasma catecholamines, blood pressure and heart rate in normal subjects. Clinical Autonomic Research, 2(2), 89-97.
Lambrick, D., Stoner, L., Grigg, R., & Faulkner, J. (2016). Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology, 53(9), 1335-1342.
Lara-Sánchez, A. J., Zagalaz-Sánchez, M. L., Martínez-López, E. J., & Berdejo-Del-Fresno, D. (2010). Non-traditional sports at school. Benefits for physical and motor development. Citius Altius Fortius, 29(4), 47.
LeFevre, J.-A., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuk, S.-L., & Smith-Chant, B. L. (2013). The role of executive attention in the acquisition of mathematical skills for children in Grades 2 through 4. Journal of experimental child psychology, 114(2), 243-261.
Liston, C., McEwen, B. S., & Casey, B. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the national Academy of Sciences, 106(3), 912-917.
Lopes, V. P., Vasques, C., Pereira, B., Maia, J. A., & Malina, R. M. (2006). Physical activity patterns during school recess: a study in children 6 to 10 years old.
Lox, C., Ginis, K. A. M., & Petruzzello, S. J. (2011). 健身運動心理學: 理論與實務的整合. He feng chu ban.
Lubans, D., Richards, J., Hillman, C., Faulkner, G., Beauchamp, M., Nilsson, M., Kelly, P., Smith, J., Raine, L., & Biddle, S. (2016). Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics, 138(3).
Ludyga, S., Brand, S., Gerber, M., Weber, P., Brotzmann, M., Habibifar, F., & Pühse, U. (2017). An event-related potential investigation of the acute effects of aerobic and coordinative exercise on inhibitory control in children with ADHD. Developmental cognitive neuroscience, 28, 21-28.
Ludyga, S., Gerber, M., Brand, S., Holsboer‐Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta‐analysis. Psychophysiology, 53(11), 1611-1626.
Ma, J. K., Le Mare, L., & Gurd, B. J. (2015). Four minutes of in-class high-intensity interval activity improves selective attention in 9-to 11-year olds. Applied physiology, nutrition, and metabolism, 40(3), 238-244.
Mahar, M. T., Murphy, S. K., Rowe, D. A., Golden, J., Shields, A. T., & Raedeke, T. D. (2006). Effects of a classroom-based program on physical activity and on-task behavior. Medicine and science in sports and exercise, 38(12), 2086.
Marquez, C. M. S., Vanaudenaerde, B., Troosters, T., & Wenderoth, N. (2015). High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of applied physiology.
Martins, J., Marques, A., Rodrigues, A., Sarmento, H., Onofre, M., & Carreiro da Costa, F. (2018). Exploring the perspectives of physically active and inactive adolescents: how does physical education influence their lifestyles? Sport, Education and Society, 23(5), 505-519.
Medicine, A. C. o. S. (2013). ACSM's Resources for the Personal Trainer. Lippincott Williams & Wilkins.
Mierau, A., Hülsdünker, T., Mierau, J., Hense, A., Hense, J., & Strüder, H. K. (2014). Acute exercise induces cortical inhibition and reduces arousal in response to visual stimulation in young children. International Journal of Developmental Neuroscience, 34, 1-8.
Miller, H. V., Barnes, J., & Beaver, K. M. (2011). Self-control and health outcomes in a nationally representative sample. American journal of health behavior, 35(1), 15-27.
Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., Houts, R., Poulton, R., Roberts, B. W., & Ross, S. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the national Academy of Sciences, 108(7), 2693-2698.
Monette, S., Bigras, M., & Guay, M.-C. (2011). The role of the executive functions in school achievement at the end of Grade 1. Journal of experimental child psychology, 109(2), 158-173.
Morales-Muñoz, I., Upthegrove, R., Mallikarjun, P. K., Broome, M. R., & Marwaha, S. (2021). Longitudinal associations between cognitive deficits in childhood and psychopathological symptoms in adolescence and young adulthood. JAMA network open, 4(4), e214724-e214724.
Moss, M. C., & Scholey, A. B. (1996). Oxygen administration enhances memory formation in healthy young adults. Psychopharmacology, 124(3), 255-260.
Nederkoorn, C., Braet, C., Van Eijs, Y., Tanghe, A., & Jansen, A. (2006). Why obese children cannot resist food: the role of impulsivity. Eating behaviors, 7(4), 315-322.
Netz, Y., & Jacob, T. (1994). Exercise and the psychological state of institutionalized elderly: a review. Perceptual and motor skills, 79(3), 1107-1118.
Niemann, C., Wegner, M., Voelcker-Rehage, C., Holzweg, M., Arafat, A. M., & Budde, H. (2013). Influence of acute and chronic physical activity on cognitive performance and saliva testosterone in preadolescent school children. Mental health and physical activity, 6(3), 197-204.
Noten, M. M., Van der Heijden, K. B., Huijbregts, S. C., Van Goozen, S. H., & Swaab, H. (2020). Associations between empathy, inhibitory control, and physical aggression in toddlerhood. Developmental psychobiology, 62(6), 871-881.
Ogden, C., & Carroll, M. (2010). Prevalence of obesity among children and adolescents: United States, trends 1963-1965 through 2007-2008.
Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: mechanisms of regulation. Journal of applied physiology, 107(5), 1370-1380.
Opendak, M., & Gould, E. (2015). Adult neurogenesis: a substrate for experience-dependent change. Trends in cognitive sciences, 19(3), 151-161.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paschen, L., Lehmann, T., Kehne, M., & Baumeister, J. (2019). Effects of acute physical exercise with low and high cognitive demands on executive functions in children: A systematic review. Pediatric Exercise Science, 31(3), 267-281.
Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R., & Small, S. A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the national Academy of Sciences, 104(13), 5638-5643.
Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport and Exercise Psychology, 34(6), 766-786.
Petersen, I. T., Hoyniak, C. P., McQuillan, M. E., Bates, J. E., & Staples, A. D. (2016). Measuring the development of inhibitory control: The challenge of heterotypic continuity. Developmental review, 40, 25-71.
Piercy, K. L., Troiano, R. P., Ballard, R. M., Carlson, S. A., Fulton, J. E., Galuska, D. A., George, S. M., & Olson, R. D. (2018). The physical activity guidelines for Americans. Jama, 320(19), 2020-2028.
Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., & Valentino, R. (2020). Locus coeruleus: a new look at the blue spot. Nature Reviews Neuroscience, 21(11), 644-659.
Pontifex, M. B., Raine, L. B., Johnson, C. R., Chaddock, L., Voss, M. W., Cohen, N. J., Kramer, A. F., & Hillman, C. H. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of cognitive neuroscience, 23(6), 1332-1345.
Raaijmakers, M. A., Smidts, D. P., Sergeant, J. A., Maassen, G. H., Posthumus, J. A., Van Engeland, H., & Matthys, W. (2008). Executive functions in preschool children with aggressive behavior: Impairments in inhibitory control. Journal of abnormal child psychology, 36(7), 1097-1107.
Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A.-M. K., Pardo, J. V., Fox, P. T., & Petersen, S. E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral cortex, 4(1), 8-26.
Reyes, S., Peirano, P., Peigneux, P., Lozoff, B., & Algarin, C. (2015). Inhibitory control in otherwise healthy overweight 10-year-old children. International journal of obesity, 39(8), 1230-1235.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.
Robbins, T. W., & Arnsten, A. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annual review of neuroscience, 32, 267.
Roberts, C. K., Freed, B., & McCarthy, W. J. (2010). Low aerobic fitness and obesity are associated with lower standardized test scores in children. The Journal of pediatrics, 156(5), 711-718. e711.
Robertson, R. J., GOSS, F. L., RUTKOWSKI, J., LENZ, B., DIXON, C., TIMMER, J., FRAZEE, K., DUBE, J., & ANDREACCI, J. (2003). Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Medicine & Science in Sports & Exercise, 35(2), 333-341.
Robinson, K. M., & Dubé, A. K. (2013). Children's additive concepts: Promoting understanding and the role of inhibition. Learning and Individual Differences, 23, 101-107.
Romero-López, M., Pichardo, M. C., Justicia-Arráez, A., & Bembibre-Serrano, J. (2021). Reducing Aggression by Developing Emotional and Inhibitory Control. International Journal of Environmental Research and Public Health, 18(10), 5263.
Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the national Academy of Sciences, 102(41), 14931-14936.
Rusnáková, Š., & Rektor, I. (2012). The neurocognitive networks of the executive functions. Advances in Clinical Neurophysiology; Croatia: InTech, 161-170.
Sallis, J. F. (2010). We do not have to sacrifice children's health to achieve academic goals. The Journal of pediatrics, 156(5), 696-697.
Seeyave, D. M., Coleman, S., Appugliese, D., Corwyn, R. F., Bradley, R. H., Davidson, N. S., Kaciroti, N., & Lumeng, J. C. (2009). Ability to delay gratification at age 4 years and risk of overweight at age 11 years. Archives of pediatrics & adolescent medicine, 163(4), 303-308.
St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly journal of experimental psychology, 59(4), 745-759.
Stein, M., Auerswald, M., & Ebersbach, M. (2017). Relationships between motor and executive functions and the effect of an acute coordinative intervention on executive functions in kindergartners. Frontiers in psychology, 8, 859.
Svebak, S., & Murgatroyd, S. (1985). Metamotivational dominance: a multimethod validation of reversal theory constructs. Journal of personality and social psychology, 48(1), 107.
Swanson, H. L. (2006). Cognitive processes that underlie mathematical precociousness in young children. Journal of experimental child psychology, 93(3), 239-264.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
Thamotharan, S., Lange, K., Zale, E. L., Huffhines, L., & Fields, S. (2013). The role of impulsivity in pediatric obesity and weight status: a meta-analytic review. Clinical psychology review, 33(2), 253-262.
Tomporowski, P. D., McCullick, B., Pendleton, D. M., & Pesce, C. (2015). Exercise and children's cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 47-55.
Travis, F. (1998). Cortical and cognitive development in 4th, 8th and 12th grade students: The contribution of speed of processing and executive functioning to cognitive development. Biological psychology, 48(1), 37-56.
Utter, A. C., Robertson, R. J., Nieman, D. C., & Kang, J. (2002). Children's OMNI Scale of Perceived Exertion: walking/running evaluation. Medicine and science in sports and exercise, 34(1), 139-144.
Van den Berg, V., Saliasi, E., De Groot, R. H., Jolles, J., Chinapaw, M. J., & Singh, A. S. (2016). Physical activity in the school setting: Cognitive performance is not affected by three different types of acute exercise. Frontiers in psychology, 7, 723.
Van Praag, H., Shubert, T., Zhao, C., & Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience, 25(38), 8680-8685.
Vazou, S., & Smiley-Oyen, A. (2014). Moving and academic learning are not antagonists: acute effects on executive function and enjoyment. Journal of Sport and Exercise Psychology, 36(5), 474-485.
Verbruggen, F., & Logan, G. D. (2008). Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. Journal of Experimental Psychology: General, 137(4), 649.
Verburgh, L., Königs, M., Scherder, E. J., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. British journal of sports medicine, 48(12), 973-979.
Vivar, C., Potter, M. C., & Praag, H. v. (2012). All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Neurogenesis and neural plasticity, 189-210.
Vosniadou, S., Pnevmatikos, D., & Makris, N. (2018). The role of executive function in the construction and employment of scientific and mathematical concepts that require conceptual change learning. Neuroeducation Journal, 5(2), 58-68.
Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wójcicki, T. R., & Mailey, E. L. (2013). Neurobiological markers of exercise-related brain plasticity in older adults. Brain, behavior, and immunity, 28, 90-99.
Wang, C.-C., Chen, F.-T., Chi, L., & Chang, Y.-K. (2012). 急性健身運動時對威斯康辛卡片分類測驗之影響. 大專體育學刊, 14(3), 349-358.
Wang, C.-H., Chang, C.-C., Liang, Y.-M., Shih, C.-M., Chiu, W.-S., Tseng, P., Hung, D. L., Tzeng, O. J., Muggleton, N. G., & Juan, C.-H. (2013). Open vs. closed skill sports and the modulation of inhibitory control. PloS one, 8(2), e55773.
Wilkinson, H. R., Smid, C., Morris, S., Farran, E. K., Dumontheil, I., Mayer, S., Tolmie, A., Bell, D., Porayska-Pomsta, K., & Holmes, W. (2020). Domain-specific inhibitory control training to improve children’s learning of counterintuitive concepts in mathematics and science. Journal of Cognitive Enhancement, 4(3), 296-314.
Willis, J. (2009). What you should know about your brain. Educational Leadership, 67(4), 1-3.
Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., & Floel, A. (2007). High impact running improves learning. Neurobiology of learning and memory, 87(4), 597-609.
World Health Organization, t. (2010). Global recommendations on physical activity for health. World Health Organization.
Yang, Y., Shields, G. S., Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225-244.
Zach, S., & Shalom, E. (2016). The influence of acute physical activity on working memory. Perceptual and motor skills, 122(2), 365-374.
Zaitchik, D., Iqbal, Y., & Carey, S. (2014). The effect of executive function on biological reasoning in young children: An individual differences study. Child development, 85(1), 160-175.
Zelazo, P. D., & Müller, U. (2002). The balance beam in the balance: Reflections on rules, relational complexity, and developmental processes. Journal of experimental child psychology, 81(4), 458-465.