研究生: |
呂宜蓉 I-Jung Lu |
---|---|
論文名稱: |
辣椒素引起大鼠聲門關閉的神經調控機制 Neural Mechanism of Glottal Closure Induced by Capsaicin in the Rat |
指導教授: |
黃基礎
Hwang, Ji-Chuu |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 喉返神經 、辣椒素 、聲門運動 、肺C纖維 |
英文關鍵詞: | recurrent laryngeal nerve, capsaicin, vocal cords, Pulmonary C-fiber, apnea, hypotension, bradycardia |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
文獻上報導以辣椒素刺激肺C纖維,會引起呼吸暫停、血壓下降、心跳變慢三合一反射性反應,是一種防禦性保護機制,可以減緩有害物質的入侵及傷害。若是可以將刺激性物質阻擋使之不能進入,應該可以更加有效保護我們的呼吸系統,避免更多的侵害。喉部的聲門是控制呼吸道打開與關閉的閘門,也就是呼吸氣流必經的通路,控制喉部聲門外展 (開啟) 與內收 (關閉) 的神經是喉返神經。本研究目的在探討肺C纖維興奮對大鼠喉返神經呼吸活動的影響,藉以探討聲門是否會因為肺C纖維興奮而緊閉。
本研究選用Wistar品系雄性大鼠,利用辣椒素興奮肺C纖維,分為四部分實驗進行。第一,從右頸靜脈注入辣椒素以興奮肺C纖維,觀察甲杓肌活性之反應、聲門下壓力以及聲門外展與內收的變化,以研究聲門是否真的關閉;第二,投予辣椒素興奮肺C纖維,觀察喉返神經呼吸活動的反應;第三,同樣興奮肺C纖維,觀察控制聲門打開的喉返神經外展支吸氣活動以及控制聲門內收支的呼氣活動之變化;第四,研究單一喉返神經呼吸神經元對肺C纖維興奮的反應以解釋喉返神經的反應機制。
研究所得結果顯示,辣椒素由右頸靜脈注射進入右心房,以興奮肺C纖維時,會引起呼吸暫停、血壓降低及心跳變慢反應,在呼吸暫停與恢復期間,甲杓肌活動 (即TA EMG) 增強,導致聲帶內收、聲門緊緊關閉,使呼氣氣流無法順利通過聲門,引起聲門下壓力大大增加,以數位相機透過立體解剖顯微鏡,可以同步攝影,拍下實驗過程中,聲門的確在辣椒素的作用下緊緊關閉;整條喉返神經呼氣與吸氣活動都顯著增強,呼氣活動增強可能會促使聲門關閉,有利於保護肺與呼吸道免於再受到刺激性氣體的刺激,可是,在膈神經活動逐漸恢復時,整條喉返神經吸氣活動增強,使聲門展開,卻可能使肺與呼吸道更容易受到有害氣體的侵襲;這種不合理的反應,從同時記錄外展支與內收支對辣椒素的反應得到解釋,其實外展支的吸氣活動是降低的,但是由於喉返神經內收支在辣椒素作用下,非常興奮而轉變成為連續性活動,使得整條喉返神經呼吸活動外觀宛如增強似的,在內收支活動增強下,使內收支所支配的甲杓肌活動增強,於是聲門關閉。
到底辣椒素刺激後,喉返神經的反應機制是甚麼?這個部分是藉由分離並記錄喉返神經單根纖維,來解答整條喉返神經對辣椒素作用所引起的反應機制,這個實驗可以幫助我們更清楚了解當肺C纖維受到刺激時,喉返神經到底產生什麼樣的反應機制來因應並調控聲門的開啟與關閉。這個部分的實驗結果顯示,興奮肺C纖維會抑制吸氣神經纖維 (I) 和呼與吸神經纖維 (E-I),卻會增強呼氣神經纖維 (E) 以及激活靜態神經纖維 (S) 參與放電反應,不僅如此,有些呼氣神經纖維還會提前於吸氣時活動起來,有些則轉變為連續性放電,這些吸氣相關神經細胞放電率受到抑制,呼氣神經細胞受到興奮、並提前活動,可充分說明喉返神經外展支與內收支的反應機制,以作為聲門因應辣椒素作用而關閉起來的神經生理學依據。
總之,以辣椒素興奮肺的C纖維,會引起反射性反應,導致聲門緊閉、呼吸暫停、降壓以及抑心作用,以降低有害氣體對呼吸道及肺更進一的傷害,這些反應對呼吸道與肺可能具有防禦性保護作用。
Pulmonary C-fiber (PCF) activation by capsaicin is known to produce apnea, hypotension and bradycardia. This triad response of cardiopulmonary chemoreflex has been thought as a combined protective mechanism for the airways and lungs to prevent further insults. However, a defensive protection may be more efficient if the irritant can be kept from entering the respiratory system. The movement of the vocal cords, which is innervated and controlled by the recurrent laryngeal nerves (RLN), may be a good candidate for this defensive mechanism. The purpose of the present study was designed to investigate whether the vocal cords were closed in response to capsaicin administration and to study the neural regulation by recording respiratory-related activities of the RLN when the PCF was activated by capsaicin.
Wistar strain of rat was used in the present study. PCF was activated by capsaicin administration via the right jugular vein. Four experiments were performed. The first experiment was to record electromyogram (EMG) activity of the thyroarytenoid muscle (TA), the main adductor, and the subglottal pressure (SGP), and also to observe the vocal cord movement in response to capsaicin administration. The second study was to trace the response of the respiratory-related activity of the RLN to capsaicin administration. In the third experiment, activities of the abducent and adducent branches of the RLN, innervating the abducent and adduct muscles, respectively, were examined of their responses to capsaicin administration. The final experiment was designed to explain the mechanism of the RLN response to capsaicin administration by recording single fiber activities of the RLN.
The results demonstrated that PCF activation by capsaicin administration could produce the triad cardiopulmonary chemoreflex and a concomitant increase in TA EMG throughout the apnea and a period of recovery from the apnea. This increase in TA EMG adducted the vocal cords to close the glottis, which in turn to lead to a large increase in SGP. In response to capsaicin delivery to the right jugular vein, the RLN activity was immediately enhanced during the apneic period and also the recovery from the apnea. The enhancement of RLN activity during expiration after recovery from apnea might give a good evidence for the protective role due to the adduction of the vocal cords to close the glottis. However, the enhanced RLN activity during inspiration after recovery might be even worse in term of the protective role. The contradictory phenomenon could be explained by the observation of thyroarytenoid branch of the recurrent laryngeal nerve (TA RLN), showing changing its discharge earlier to commence from the early expiratory stage to inspiration so that a continuous activity had occurred. In fact, the activation of the abducent branch of the recurrent laryngeal nerve (Abd RLN) activity was reduced by capsaicin treatment. The increase in activity of the TA or adducent branch of the RLN and its advanced onset to commence earlier during TI might give an explanation why the whole RLN activity during inspiration after recovery from apnea was still higher than control.
Using single fiber recording technique, we found 4 types of recurrent laryngeal motoneurons, which were the inspiratory (I), expiratory-inspiratory (E-I), expiratory (E), and silent (S) types. In response to capsaicin administration, activities of E-I and I were inhibited while E and S were excited. Moreover, some E motoneurons were advanced their onset time to commence earlier during inspiratory period and some E neurons were continuously discharged throughout the period of inspiration and expiration with capsaicin administration. These responsive patterns of laryngeal motoneurons might underlie the notion that capsaicin administration could produce glottal constriction through the excitation on the TA branch of the RLN.
In summary, data obtained in the present study demonstrated that an increase in adducent (TA) branch of the RLN activity caused by capsaicin administration might result in augmentation of TA EMG to drive the vocal cords to close the glottis tightly. The combination of glottal closure with apnea, hypotension, and bradycardia might provide a highly effective protective mechanism for the airways and lungs to prevent further insults by irritant.
Adrian, E. D., and Bronk, D. W. (1928). The discharge of impulses in motor nerve fibers. Part I. Impulses in single fibres of the phrenic nerve. J Physiol 66, 81-101.
Adrian, E. D., and Bronk, D. W. (1929). The discharge of impulses in motor nerve fibres. Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol 67, 119-151.
Agostoni, E., Chinnock, J. E., De Daly, M. B., and Murray, J. G. (1957). Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135, 182-205.
Barillot, J. C., and Dussardier, M. (1973). [Patterns of discharge of inspiratory laryngeal motor neurons under various experimental conditions]. J Physiol (Paris) 66, 593-629.
Barnes, P. J. (1991). Neuropeptides and asthma. Am Rev Respir Dis 143, S28-32.
Barnes, P. J. (2001). Neurogenic inflammation in the airways. Respir Physiol 125, 145-154.
Bartlett, D., Jr. (1989). Respiratory functions of the larynx. Physiol Rev 69, 33-57.
Belvisi, M. G. (2003). Sensory nerves and airway inflammation: role of A delta and C-fibres. Pulm Pharmacol Ther 16, 1-7.
Bergren, D. R., Ustinova, E. E., and Schultz, H. D. (1997). Pulmonary C-fiber activation before and after peptidase inhibition in rats. Respir Physiol 107, 99-109.
Berkowitz, R. G., Sun, Q. J., Chalmers, J., and Pilowsky, P. (1999). Identification of posterior cricoarytenoid motoneurons in the rat. Ann Otol Rhinol Laryngol 108, 1033-1041.
Bianchi, A. L., Denavit-Saubie, M., and Champagnat, J. (1995). Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75, 1-45.
Boggs, D. F., and Bartlett, D., Jr. (1982). Chemical specificity of a laryngeal apneic reflex in puppies. J Appl Physiol 53, 455-462.
Boscan, P., and Paton, J. F. (2001). Role of the solitary tract nucleus in mediating nociceptive evoked cardiorespiratory responses. Auton Neurosci 86, 170-182.
Brayden, J. E., and Large, W. A. (1986). Electrophysiological analysis of neurogenic vasodilatation in the isolated lingual artery of the rabbit. Br J Pharmacol 89, 163-171.
Brennick, M. J., Trouard, T. P., Gmitro, A. F., and Fregosi, R. F. (2001). MRI study of pharyngeal airway changes during stimulation of the hypoglossal nerve branches in rats. J Appl Physiol 90, 1373-1384.
Burnstock, G., and Campbell, G. (1963). Comparative Physiology Of The Vertebrate Autonomic Nervous System. Ii. Innervation Of The Urinary Bladder Of The Ringtail Possum (Pseudocheirus Peregrinus). J Exp Biol 40, 421-436.
Burnstock, G., and Holman, M. E. (1964). An Electrophysiological Investigation Of The Actions Of Some Autonomic Blocking Drugs On Transmission In The Guinea-Pig Vas Deferens. Br J Pharmacol 23, 600-612.
Carr, M. J., Kollarik, M., Meeker, S. N., and Undem, B. J. (2003). A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther 304, 1275-1279.
Cohen, M. I., and Shaw, C. F. (2004). Role in the inspiratory off-switch of vagal inputs to rostral pontine inspiratory-modulated neurons. Respir Physiol Neurobiol 143, 127-140.
Coleridge, H. M., and Coleridge, J. C. (1977). Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol 29, 125-142.
Coleridge, H. M., and Coleridge, J. C. (1994). Pulmonary reflexes: neural mechanisms of pulmonary defense. Annu Rev Physiol 56, 69-91.
Coleridge, H.M. and Coleridge, J.C. (1986).Reflexes evoked from tracheobronchial tree and lungs. In: Cherniak, N.S. and J.G. Widdicombe, Handbook of Physiology: The Respiratory System. Control of Breathing, part 1, vol. II. Bethesda, MD: Am. Physiol. Soc., sect. 3, vol. II, pt. 1, chapt. 12, p. 395–429.
Coleridge, J. C., and Coleridge, H. M. (1984). Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99, 1-110.
Coon, R. L., Clifford, P. S., Hopp, F. A., and Zuperku, E. J. (1990). Reflex ventilatory effects of KCl stimulation of lung receptors with sympathetic afferents. Respir Physiol 82, 349-358.
Cortright, D. N., and Szallasi, A. (2004). Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 271, 1814-1819.
Dedo, H. H., and Ogura, J. H. (1965). Vocal Cord Electromyography In The Dog. Laryngoscope 75, 201-211.
Diaz, V., Arsenault, J., and Praud, J. P. (2000). Consequences of capsaicin treatment on pulmonary vagal reflexes and chemoreceptor activity in lambs. J Appl Physiol 89, 1709-1718.
Diaz, V., Dorion, D., Renolleau, S., Letourneau, P., Kianicka, I., and Praud, J. P. (1999). Effects of capsaicin pretreatment on expiratory laryngeal closure during pulmonary edema in lambs. J Appl Physiol 86, 1570-1577.
Diaz, V., Kianicka, I., Letourneau, P., and Praud, J. P. (1996). Inferior pharyngeal constrictor electromyographic activity during permeability pulmonary edema in lambs. J Appl Physiol 81, 1598-1604.
Dovas, A., Lucchi, M. L., Bortolami, R., Grandis, A., Palladino, A. R., Banelli, E., Carretta, M., Magni, F., and Paolocci, N. (1998). Collaterals of recurrent laryngeal nerve fibres innervate the thymus: a fluorescent tracer and HRP investigation of efferent vagal neurons in the rat brainstem. Brain Res 809, 141-148.
Dunnett, C. W. (1964). New tables for multiple comparisons with a control. Biometrics 20, 482-491.
Dusser, D. J., Djokic, T. D., Borson, D. B., and Nadel, J. A. (1989). Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J Clin Invest 84, 900-906.
Dutschmann, M., and Paton, J. F. (2002a). Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J Physiol 543, 643-653.
Dutschmann, M., and Paton, J. F. (2002b). Trigeminal reflex regulation of the glottis depends on central glycinergic inhibition in the rat. Am J Physiol Regul Integr Comp Physiol 282, R999-R1005.
England, S. J., and Bartlett, D., Jr. (1982). Changes in respiratory movements of the human vocal cords during hyperpnea. J Appl Physiol 52, 780-785.
England, S. J., Bartlett, D., Jr., and Daubenspeck, J. A. (1982). Influence of human vocal cord movements on airflow and resistance during eupnea. J Appl Physiol 52, 773-779.
Evans, C., Baxi, S., Neff, R., Venkatesan, P., and Mendelowitz, D. (2003). Synaptic activation of cardiac vagal neurons by capsaicin sensitive and insensitive sensory neurons. Brain Res 979, 210-215.
Eyzaguirre, C., and Taylor, J. R. (1963). Respiratory discharge of some vagal motoneurons. Neurophysiol 26, 61-78.
Fortier, P. H., Reix, P., Arsenault, J., Dorion, D., and Praud, J. P. (2003). Active upper airway closure during induced central apneas in lambs is complete at the laryngeal level only. J Appl Physiol 95, 97-103.
Fung, M. L., Liaw, J. M., and Hwang, J. C. (1989). Effect of electrical stimulation of the superior laryngeal nerve on respiratory-modulated facial nerve activity in cats. Chin J Physiol 32, 81-91.
Green, J. F., Schmidt, N. D., Schultz, H. D., Roberts, A. M., Coleridge, H. M., and Coleridge, J. C. (1984). Pulmonary C-fibers evoke both apnea and tachypnea of pulmonary chemoreflex. J Appl Physiol 57, 562-567.
Haxhiu, M. A., Cherniack, N. S., and van Lunteren, E. (1990). Central action of tachykinins on activity of expiratory pumping muscles. J Appl Physiol 69, 1981-1986.
Haxhiu, M. A., van Lunteren, E., Deal, E. C., and Cherniack, N. S. (1988). Effect of stimulation of pulmonary C-fiber receptors on canine respiratory muscles. J Appl Physiol 65, 1087-1092.
Hedner, J., Hedner, T., and Jonason, J. (1985). Capsaicin and regulation of respiration: interaction with central substance P mechanisms. J Neural Transm 61, 239-252.
Ho, C. Y., Gu, Q., Lin, Y. S., and Lee, L. Y. (2001). Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127, 113-124.
Holzer, P. (1991). Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43, 143-201.
Hwang, J. C., Bartlett, D., Jr., and St John, W. M. (1983a). Characterization of respiratory-modulated activities of hypoglossal motoneurons. J Appl Physiol 55, 793-798.
Hwang, J. C., Chien, C. T., and St John, W. M. (1988). Characterization of respiratory-related activity of the facial nerve. Respir Physiol 73, 175-187.
Hwang, J. C., and St John, W. M. (1987). Alterations of hypoglossal motoneuronal activities during pulmonary inflations. Exp Neurol 97, 615-625.
Hwang, J. C., and St John, W. M. (1993). Facilitation and inhibition of phrenic motoneuronal activities by lung inflation. J Appl Physiol 74, 2485-2492.
Hwang, J. C., St John, W. M., and Bartlett, D., Jr. (1983b). Respiratory-related hypoglossal nerve activity: influence of anesthetics. J Appl Physiol 55, 785-792.
Hwang, J. C., St John, W. M., and Bartlett, D., Jr. (1987). Influence of pulmonary inflations on discharge patterns of phrenic motoneurons. J Appl Physiol 63, 1421-1427.
Hwang, J. C., StJohn, W. M., and Bartlett, D., Jr. (1984). Afferent pathways for hypoglossal and phrenic responses to changes in upper airway pressure. Respir Physiol 55, 341-354.
Hwang, J. C., Zhou, D., and St John, W. M. (1989). Characterization of expiratory intercostal activity to triangularis sterni in cats. J Appl Physiol 67, 1518-1524.
Iscoe, S., Dankoff, J., Migicovsky, R., and Polosa, C. (1976). Recruitment and discharge frequency of phrenic motoneurones during inspiration. Respir Physiol 26, 113-128.
Kaczynska, K., and Szereda-Przestaszewska, M. (2002). Superior laryngeal nerve section abolishes capsaicin evoked chemoreflex in anaesthetized rats. Acta Neurobiol Exp (Wars) 62, 19-24.
Kalia, M., and Mesulam, M. M. (1980a). Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J Comp Neurol 193, 435-465.
Kalia, M., and Mesulam, M. M. (1980b). Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193, 467-508.
Kostreva, D. R., Hopp, F. A., Zuperku, E. J., Igler, F. O., Coon, R. L., and Kampine, J. P. (1978). Respiratory inhibition with sympathetic afferent stimulation in the canine and primate. J Appl Physiol 44, 718-724.
Kummer, W., and Oberst, P. (1993). Neuronal projections to the guinea pig stellate ganglion investigated by retrograde tracing. J Auton Nerv Syst 42, 71-80.
Lai, C. J., and Kou, Y. R. (1998). Stimulation of vagal pulmonary C fibers by inhaled wood smoke in rats. J Appl Physiol 84, 30-36.
Langley, J. N. (1898). On inhibitory fibres in the vagus to the end of the oesophagus and stomach. J physiol 23, 407-415.
Langley, J. N., and Anderson, M. B. (1895). The innervation of the pelvic and adjoining viscera. J physiol 19, 71-130.
Lara, J. P., Dawid-Milner, M. S., Lopez, M. V., Montes, C., Spyer, K. M., and Gonzalez-Baron, S. (2002). Laryngeal effects of stimulation of rostral and ventral pons in the anaesthetized rat. Brain Res 934, 97-106.
LeDoux, J. F., and Wilson, L. B. (2001). Neuronal application of capsaicin modulates somatic pressor reflexes. Am J Physiol Regul Integr Comp Physiol 281, R868-877.
Lee, K. Z., Lu, I. J., Ku, L. C., Lin, J. T., and Hwang, J. C. (2003). Response of respiratory-related hypoglossal nerve activity to capsaicin-induced pulmonary C-fiber activation in rats. J Biomed Sci 10, 706-717.
Lee, L. Y., Morton, R. F., and Kou, Y. R. (1990). Acute effects of cigarette smoke on breathing in rats: vagal and nonvagal mechanisms. J Appl Physiol 68, 955-961.
Lee, L. Y., and Pisarri, T. E. (2001). Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125, 47-65.
Lin, Y. S., and Kou, Y. R. (1997). Reflex apneic response evoked by laryngeal exposure to wood smoke in rats: neural and chemical mechanisms. J Appl Physiol 83, 723-730.
Lu, I. J., Ku, L. C., Lin, J. T., Lee, K. Z., and Hwang, J. C. (2002). Pulmonary C-fiber activation enhances respiratory-related activities of the recurrent laryngeal nerve in rats. Chin J Physiol 45, 143-154.
Lundberg, J. M., Brodin, E., and Saria, A. (1983a). Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119, 243-252.
Lundberg, J. M., Martling, C. R., Saria, A., Folkers, K., and Rosell, S. (1983b). Cigarette smoke-induced airway oedema due to activation of capsaicin-sensitive vagal afferents and substance P release. Neuroscience 10, 1361-1368.
Lundberg, J. M., and Saria, A. (1982). Bronchial smooth muscle contraction induced by stimulation of capsaicin-sensitive sensory neurons. Acta Physiol Scand 116, 473-476.
Lundberg J.M., Saria, A, Lundberg, L, Anggard, A., Martling, C.R., Thesodorsson-Norheim, E, Stjarne, P.and Hokfelt, T.G. (1987). Bioactive peptides in capsaicin-sensitive C-fiber afferents of the airways: functional and pathophysiological implications. In: The airways neural control in health and disease (Kaliner MA, Barnes RJ, eds). New York:Marcel Dekker, 417-445.
McCaffrey, T. V., and Kern, E. B. (1980). Laryngeal regulation of airway resistance. II. Pulmonary receptor reflexes. Ann Otol Rhinol Laryngol 89, 462-466.
Montell, C. (2005). The TRP superfamily of cation channels. Sci STKE 2005, re3.
Murakami, Y., and Kirchner, J. A. (1972). Respiratory movements of the vocal cords. An electromyographic study in the cat. Laryngoscope 82, 454-467.
Mutoh, T., Bonham, A. C., and Joad, J. P. (2000). Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output. Am J Physiol Regul Integr Comp Physiol 279, R1215-1223.
Mutoh, T., Bonham, A. C., Kott, K. S., and Joad, J. P. (1999). Chronic exposure to sidestream tobacco smoke augments lung C-fiber responsiveness in young guinea pigs. J Appl Physiol 87, 757-768.
Mutoh, T., Tsubone, H., Nishimura, R., and Sasaki, N. (1998). Effects of volatile anesthetics on vagal C-fiber activities and their reflexes in anesthetized dogs. Respir Physiol 112, 253-264.
O'Neil, R. G., and Brown, R. C. (2003). The vanilloid receptor family of calcium-permeable channels: molecular integrators of microenvironmental stimuli. News Physiol Sci 18, 226-231.
Okubo, J., Kitamura, S., Ogata, K., and Sakai, A. (1987). Localization of rabbit laryngeal motoneurons in the nucleus ambiguus. Exp Neurol 96, 528-539.
Otsuka, M., and Yanagisawa, M. (1988). Effect of a tachykinin antagonist on a nociceptive reflex in the isolated spinal cord-tail preparation of the newborn rat. J Physiol 395, 255-270.
Otsuka, M., and Yoshioka, K. (1993). Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73, 229-308.
Paintal, A. S. (1969). Mechanism of stimulation of type J pulmonary receptors. J Physiol 203, 511-532.
Paintal, A. S. (1973). Vagal sensory receptors and their reflex effects. Physiol Rev 53, 159-227.
Palecek, F., Sant'Ambrogio, G., Sant'Ambrogio, F. B., and Mathew, O. P. (1989). Reflex responses to capsaicin: intravenous, aerosol, and intratracheal administration. J Appl Physiol 67, 1428-1437.
Pasaro, R., Lobera, B., Gonzalez-Baron, S., and Delgado-Garcia, J. M. (1983). Cytoarchitectonic organization of laryngeal motoneurons within the nucleus ambiguus of the cat. Exp Neurol 82, 623-634.
Paton, J. F., Li, Y. W., and Kasparov, S. (1999). Reflex response and convergence of pharyngoesophageal and peripheral chemoreceptors in the nucleus of the solitary tract. Neuroscience 93, 143-154.
Paton, J. F., and Nolan, P. J. (2000). Similarities in reflex control of laryngeal and cardiac vagal motor neurones. Respir Physiol 119, 101-111.
Praud, J. P., Diaz, V., Kianicka, I., and Dalle, D. (1995). Active expiratory glottic closure during permeability pulmonary edema in nonsedated lambs. Am J Respir Crit Care Med 152, 732-737.
Proctor, D. F. (1977). The upper airways. I. Nasal physiology and defense of the lungs. Am Rev Respir Dis 115, 97-129.
Reix, P., Arsenault, J., Dome, V., Fortier, P. H., Lafond, J. R., Moreau-Bussiere, F., Dorion, D., and Praud, J. P. (2003). Active glottal closure during central apneas limits oxygen desaturation in premature lambs. J Appl Physiol 94, 1949-1954.
Remmers, J. E., deGroot, W. J., Sauerland, E. K., and Anch, A. M. (1978). Pathogenesis of upper airway occlusion during sleep. J Appl Physiol 44, 931-938.
Russell, J. A., and Lai-Fook, S. J. (1979). Reflex bronchoconstriction induced by capsaicin in the dog. J Appl Physiol 47, 961-967.
Sant'Ambrogio, G., and Widdicombe, J. (2001). Reflexes from airway rapidly adapting receptors. Respir Physiol 125, 33-45.
Schelegle, E. S., Mansoor, J. K., and Green, J. F. (1995). Influence of background vagal C-fiber activity on eupneic breathing pattern in anesthetized dogs. J Appl Physiol 79, 600-606.
Schmidt, T., and Wellhoner, H. H. (1970). The reflex influence of a group of slowly conducting vagal afferents on alpha and gamma discharges in cat intercostal nerves. Pflugers Arch 318, 333-345.
Sherrey, J. H., and Megirian, D. (1975). Analysis of the respiratory role of intrinsic laryngeal motoneurons of cat. Exp Neurol 49, 456-465.
St-Hilaire, M., Nsegbe, E., Gagnon-Gervais, K., Samson, N., Moreau-Bussiere, F., Fortier, P. H., and Praud, J. P. (2005). Laryngeal chemoreflexes induced by acid, water, and saline in nonsedated newborn lambs during quiet sleep. J Appl Physiol 98, 2197-2203.
St John, W. M., and Bartlett, D., Jr. (1979). Comparison of phrenic motoneuron responses to hypercapnia and isocapnic hypoxia. J Appl Physiol 46, 1096-1102.
St John, W. M., Bartlett, D., Jr., Knuth, K. V., and Hwang, J. C. (1981). Brain stem genesis of automatic ventilatory patterns independent of spinal mechanisms. J Appl Physiol 51, 204-210.
Steinberg, J. L., Khane, G. J., Fernandes, C. M., and Nel, J. P. (1986). Anatomy of the recurrent laryngeal nerve: a redescription. J Laryngol Otol 100, 919-927.
Stella, M. H., and England, S. J. (2001). Laryngeal muscle response to phasic and tonic upper airway pressure and flow. J Appl Physiol 91, 905-911.
Stransky, A., Szereda-Przestaszewska, M., and Widdicombe, J. G. (1973). The effects of lung reflexes on laryngeal resistance and motoneurone discharge. J Physiol 231, 417-438.
Szereda-Przestaszewska, M., and Wypych, B. (1996). Laryngeal constriction produced by capsaicin in the cat. J Physiol Pharmacol 47, 351-360.
Tseng, W. Y., Tsao, C. F., Ko, C. C., and Huang, H. T. (2001). Local capsaicin application to the stellate ganglion and stellatectomy attenuate neurogenic inflammation in rat bronchi. Auton Neurosci 94, 25-33.
Tully, A., Brancatisano, A., Loring, S. H., and Engel, L. A. (1990). Relationship between thyroarytenoid activity and laryngeal resistance. J Appl Physiol 68, 1988-1996.
van Lunteren, E., Haxhiu, M. A., and Cherniack, N. S. (1985). Respiratory changes in nasal muscle length. J Appl Physiol 59, 453-458.
Waldbaum, S., Hadziefendic, S., Erokwu, B., Zaidi, S. I., and Haxhiu, M. A. (2001). CNS innervation of posterior cricoarytenoid muscles: a transneuronal labeling study. Respir Physiol 126, 113-125.
Waldrop, T. G. (1986). Respiratory responses to chemical activation of left ventricular receptors. Respir Physiol 63, 383-393.
Waldrop, T. G., Eldridge, F. L., and Millhorn, D. E. (1982). Prolonged post-stimulus inhibition of breathing following stimulation of afferents from muscle. Respir Physiol 50, 239-254.
Wallenstein, S., Zucker, C. L., and Fleiss, J. L. (1980). Some statistical methods useful in circulation research. Circ Res 47, 1-9.
Wang, Y., Jones, J. F., Jeggo, R. D., de Burgh Daly, M., Jordan, D., and Ramage, A. G. (2000). Effect of pulmonary C-fibre afferent stimulation on cardiac vagal neurones in the nucleus ambiguus in anaesthetized cats. J Physiol 526 Pt 1, 157-165.
Widdicombe, J. (2001). Airway receptors. Respir Physiol 125, 3-15.
Winter, J., Bevan, S., and Campbell, E. A. (1995). Capsaicin and pain mechanisms. Br J Anaesth 75, 157-168.
Yang, Y. C., Ma, C. R., Yeh, J. L., Lo, Y. C., Wu, B. N., Lin, Y. T., and Chen, I. J. (1999). Nitrated nonivamide displaying a drawback of proton's role in capsaicin-associated sensory and neuronal activities. Gen Pharmacol 33, 257-269.
Zhou, D., Huang, Q., St John, W. M., and Bartlett, D., Jr. (1989). Respiratory activities of intralaryngeal branches of the recurrent laryngeal nerve. J Appl Physiol 67, 1171-1178.
蔡緻怡、吳季瑾、李昆澤、黃基礎 (2005). M2蕈鹼接受器參與辣椒素引起大鼠抑心與降壓作用. BioFormosa 40, 25-35.