簡易檢索 / 詳目顯示

研究生: 林子峮
Lin, Tzu-Chun
論文名稱: 統計分析遠端參與效應於葡萄糖與半乳糖硫苷醣予體醣鍵結反應
Statistical Analysis of Remote Participation in Glycosylation using Glucose and Galactose Thioglycoside Donors
指導教授: 王正中
Wang, Cheng-Chung
吳學亮
Wu, Hsyueh-Liang
口試委員: 王正中
Wang, Cheng-Chung
吳學亮
Wu, Hsyueh-Liang
謝俊結
Shie, Jiun-Jie
口試日期: 2022/07/08
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 428
中文關鍵詞: 醣類化學醣鍵結反應遠端參與效應統計分析
英文關鍵詞: Carbohydrate Chemistry, Glycosylation, Remote Participation, Statistical Analysis
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200989
論文種類: 學術論文
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醣鍵結反應是醣化學中最重要的反應,但控制其立體選擇性和產率依然是多醣合成的主要挑戰。傳統上,合成1,2-反式醣苷鍵大多利用鄰基效應進行合成。然而尚未得出合成1,2-順式醣苷鍵的通用方法。近期發現了通過位於C-3、C-4或C-6上安裝乙醯基進行的遠程參與來控制醣鍵結反應之立體選擇性。但是,由於羰基的參與程度不明確,這種合成策略在多醣的合成中仍然不實用。
    根據本文研究,沿用本實驗室之預測模型,利用統計方法分析醣鍵結反應之立體選擇性,利用C-3,C-4以及C-6位置的乙醯基醣予體與不同位置羥基之醣受體分析其反應性之相關性,並且觀察是否造成遠端效應之存在。
    工作流程概述分為四個部分,包括準備醣予體和醣受體、檢測 RRV 和 Aka、進行醣鍵結反應和統計分析其相關性。

    Glycosylation is the most important reaction in glycoscience, but controlling stereoselectivity and yield remain the major challenge in the synthesis of oligosaccharides. Traditionally, constructing 1,2-trans glycosidic linkage is relied on neighboring group effect. However, a universal method for the preparation of 1,2-cis linkage is absent. Recently, remote participation by installing C-3, C-4, or C-6 acetyl group was developed to control the stereoselective glycosylation. However, this strategy is still not practical in the synthesis of oligosaccharide due to the unclear participating level of carbonyl group.
    According to our research, a quantitative system was established to analyze the stereoselective glycosylation using statistical approach. Herein, we study the correlation between the participating level and acetyl group at C-3, C-4 and C-6 position by using statistical approach. Overview of workflow is four parts including preparing donor and acceptor, detecting the RRV and Aka, doing glycosylation and analyzing the correlation.

    謝誌 II 中文摘要 (CHINESE ABSTRACT) IV 英文摘要 (ENGLISH ABSTRACT) V 目錄 VI 表次 VIII 圖次 IX 流程目錄 XI 方程式目錄 XII 縮寫對照表 XIII 第一章 緒論 1 1.1 引言 1 1.2 醣類合成方法 3 1.3 醣鍵結反應 4 1.4 醣鍵結立體選擇性之討論 4 1.4.1 變旋異構效應 (Anomeric Effect) 6 1.4.2 鄰基效應 (Neighboring Group Effect) 9 1.4.3 遠端參與效應 (Long Range Participation) 9 1.4.4 溶劑效應 (Solvent Effect) 13 1.5 文獻回顧 13 1.5.1 順式醣苷鍵合成策略 13 1.5.2 醣基化反應中遠端參與效應之探討 14 1.5.3 相對反應值 (Relative Reaction Value, RRV) 與 醣受體親核性係數 (Acceptor Nucleophilic Constant, Aka) 16 1.5.4 統計分析醣鍵結反應 19 1.6 研究動機 20 第二章 結果與討論 22 2.1 葡萄糖與半乳糖醣予體合成 22 2.1.1 醣予體95-96, 99-100 之合成 22 2.1.2 醣予體106之合成 23 2.1.3 醣予體111之合成 24 2.1.4 醣予體113-114之合成 24 2.2 醣受體之合成 25 2.2.1 醣受體117與118之合成 25 2.2.2 醣受體121之合成 25 2.2.3 醣受體126合成 26 2.3 醣予體相對反應值測量 27 2.4 醣受體親核性係數測量 27 2.5 醣鍵結反應 29 2.6 立體選擇性預測分析 31 第三章 結論 56 第四章 參考文獻 57 第五章 實驗部分及光譜 61

    [1] Dwek, R. A., Chem. Rev. 1996, 96, 683-720.
    [2] Benoff, S., Mol. Hum. Reprod. 1997, 3, 599-637.
    [3] Holgersson, J.; Gustafsson, A.; Breimer, M. E., Immunol. Cell Biol. 2005, 83, 694-708.
    [4] Stallforth, P.; Lepenies, B.; Adibekian, A.; Seeberger, P. H., J. Med. Chem. 2009, 52, 5561-5577.
    [5] Cummings, R. D., Glycoconj. J. 2019, 36, 241-257.
    [6] Dodane, V.; Vilivalam, V. D., Pharm. sci. technol. today 1998, 1, 246-253.
    [7] Huang, S.; Huang, G., Drug Deliv. 2019, 26, 252-261.
    [8] Cheng, K.-C.; Demirci, A.; Catchmark, J. M., Appl. Microbiol. Biotechnol. 2011, 92, 29-44.
    [9] Mulloy, B.; Hogwood, J.; Gray, E.; Lever, R.; Page, C. P., Pharmacol. Rev. 2016, 68, 76-141.
    [10] Desmet, T.; Soetaert, W.; Bojarová, P.; Křen, V.; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A., Chem. Eur. J. 2012, 18, 10786-10801.
    [11] Igarashi, K., The Koenigs-Knorr reaction. In Advances in Carbohydrate Chemistry and Biochemistry, Elsevier: 1977, Vol. 34, pp 243-283.
    [12] Schmidt, R. R.; Michel, J., Angew. Chem. Int. Ed. 1980, 19, 731-732.
    [13] Lindhorst, T. K., Essentials of carbohydrate chemistry and biochemistry. John Wiley & Sons, 2007.
    [14] Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M., J. Carbohydr. Chem. 2016, 35, 1-23.
    [15] Demchenko, V. A., Curr. Org. Chem. 2003, 7, 35-79.
    [16] Crich, D., Acc. Chem. Res. 2010, 43, 1144-1153.
    [17] Nigudkar, S. S.; Demchenko, A. V., Chem. Sci. 2015, 6, 2687-2704.
    [18] Lee, Y. C.; Lee, R. T., J. Chin. Chem. Soc. 1999, 46, 283-291.
    [19] Bohé, L.; Crich, D., Carbohydr. Res. 2015, 403, 48-59.
    [20] Chatterjee, S.; Moon, S.; Hentschel, F.; Gilmore, K.; Seeberger, P. H., J. Am. Chem. Soc. 2018, 140, 11942-11953.
    [21] Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D., Chem. Rev. 2018, 118, 8242-8284.
    [22] Bohé, L.; Crich, D., C. R. Chim. 2011, 14, 3-16.
    [23] Chang, C.-W.; Lin, M.-H.; Chan, C.-K.; Su, K.-Y.; Wu, C.-H.; Lo, W.-C.; Lam, S.; Cheng, Y.-T.; Liao, P.-H.; Wong, C.-H.; Wang, C.-C., Angew. Chem. Int. Ed. 2021, 60, 12413-12423.
    [24] Chang, C.-W.; Wu, C.-H.; Lin, M.-H.; Liao, P.-H.; Chang, C.-C.; Chuang, H.-H.; Lin, S.-C.; Lam, S.; Verma, V. P.; Hsu, C.-P.; Wang, C.-C., Angew. Chem. Int. Ed. 2019, 58, 16775-16779.
    [25] Warrent, R. W.; Caughlan, C. N.; Hargis, J. H.; Yee, K. C.; Bentrude, W. G., J. Org. Chem. 1978, 43, 4266-4270.
    [26] Juaristi, E.; Cuevas, G., The Anomeric. Effect 1994.
    [27] Cumpstey, I., Org. Biomol. Chem. 2012, 10, 2503-2508.
    [28] Chalifoux, W. A.; Tykwinski, R. R., Nat. Chem. 2010, 2, 967-971.
    [29] Mydock, L. K.; Demchenko, A. V., Org. Biomol. Chem. 2010, 8, 497-510.
    [30] Goodman, L., Neighboring-Group Participation in Sugars. In Advances in Carbohydrate Chemistry, Wolfrom, M. L. 1967, Vol. 22, pp 109-175.
    [31] Zeng, Y.; Ning, J.; Kong, F., Carbohydr. Res. 2003, 338, 307-311.
    [32] Nukada, T.; Berces, A.; Zgierski, M. Z.; Whitfield, D. M., J. Am. Chem. Soc. 1998, 120, 13291-13295.
    [33] Guo, J.; Ye, X.-S., Molecules 2010, 15, 7235-7265.
    [34] Williams, R. J.; McGill, N. W.; White, J. M.; Williams, S. J., J. Carbohydr. Chem. 2010, 29, 236-263.
    [35] Hansen, T.; Elferink, H.; van Hengst, J. M. A.; Houthuijs, K. J.; Remmerswaal, W. A.; Kromm, A.; Berden, G.; van der Vorm, S.; Rijs, A. M.; Overkleeft, H. S.; Filippov, D. V.; Rutjes, F. P. J. T.; van der Marel, G. A.; Martens, J.; Oomens, J.; Codée, J. D. C.; Boltje, T. J., Nat. Commun. 2020, 11, 2664.
    [36] Demchenko, A. V.; Rousson, E.; Boons, G.-J., Tetrahedron Lett. 1999, 40, 6523-6526.
    [37] Baek, J. Y.; Lee, B.-Y.; Jo, M. G.; Kim, K. S., J. Am. Chem. Soc. 2009, 131, 17705-17713.
    [38] Lourenço, E. C.; Ventura, M. R., Tetrahedron Lett. 2013, 69, 7090-7097.
    [39] Komarova, B. S.; Orekhova, M. V.; Tsvetkov, Y. E.; Nifantiev, N. E., Carbohydr. Res. 2014, 384, 70-86.
    [40] Baek, J. Y.; Kwon, H.-W.; Myung, S. J.; Park, J. J.; Kim, M. Y.; Rathwell, D. C. K.; Jeon, H. B.; Seeberger, P. H.; Kim, K. S., Tetrahedron Lett. 2015, 71, 5315-5320.

    [41] Xu, H.; Chen, L.; Zhang, Q.; Feng, Y.; Zu, Y.; Chai, Y., Chem.: Asian J. 2019, 14, 1424-1428.
    [42] Abronina, P. I.; Zinin, A. I.; Romashin, D. A.; Malysheva, N. N.; Chizhov, A. O.; Kononov, L. O., Synlett 2015, 26, 2267-2271.
    [43] Komarova, B. S.; Tsvetkov, Y. E.; Nifantiev, N. E., Chem. Rec. 2016, 16, 488-506.
    [44] Xu, K.; Man, Q.; Zhang, Y.; Guo, J.; Liu, Y.; Fu, Z.; Zhu, Y.; Li, Y.; Zheng, M.; Ding, N., Org. Chem. Front. 2020, 7, 1606-1615.
    [45] Zhang, Y.; He, H.; Chen, Z.; Huang, Y.; Xiang, G.; Li, P.; Yang, X.; Lu, G.; Xiao, G., Angew. Chem. Int. Ed. 2021, 60, 12597-12606.
    [46] Lin, M.-H.; Chang, C.-W.; Chiang, T.-Y.; Dhurandhare, V. M.; Wang, C.-C., Org. Lett. 2021, 23, 7313-7318.
    [47] Liu, X.; Song, Y.; Liu, A.; Zhou, Y.; Zhu, Q.; Lin, Y.; Sun, H.; Zhu, K.; Liu, W.; Ding, N.; Xie, W.; Sun, H.; Yu, B.; Xu, P.; Li, W., Angew. Chem. Int. Ed. 2022, DOI: doi.org/10.1002/anie.202201510
    [48] Demchenko, A.; Stauch, T.; Boons, G.-J., Synlett 1997, 1997, 818-820.
    [49] Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hünenberger, P. H., J. Chem. Theory Comput. 2010, 6, 1783-1797.
    [50] Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.; Mong, K.-K. T., Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
    [51] Mensah, E. A.; Nguyen, H. M., J. Am. Chem. Soc. 2009, 131, 8778-8780.
    [52] Mensah, E. A.; Yu, F.; Nguyen, H. M., J. Am. Chem. Soc. 2010, 132, 14288-14302.
    [53] McKay, M. J.; Nguyen, H. M., ACS Catal. 2012, 2, 1563-1595.
    [54] Cox, D. J.; Fairbanks, A. J., Tetrahedron: Asymmetry 2009, 20, 773-780.
    [55] Yasomanee, J. P.; Demchenko, A. V., J. Am. Chem. Soc. 2012, 134, 20097-20102.
    [56] Braak, F. t.; Elferink, H.; Houthuijs, K. J.; Oomens, J.; Martens, J.; Boltje, T. J., Acc. Chem. Res. 2022.
    [57] Martin, A.; Arda, A.; Désiré, J.; Martin-Mingot, A.; Probst, N.; Sinaÿ, P.; Jiménez-Barbero, J.; Thibaudeau, S.; Blériot, Y., Nat. Chem. 2016, 8, 186-191.
    [58] Greis, K.; Kirschbaum, C.; Fittolani, G.; Mucha, E.; Chang, R.; von Helden, G.; Meijer, G.; Delbianco, M.; Seeberger, P. H.; Pagel, K., Eur. J. Org. Chem. 2022, DOI: doi.org/10.1002/ejoc.202200255
    [59] Lebedel, L.; Ardá, A.; Martin, A.; Désiré, J.; Mingot, A.; Aufiero, M.; Aiguabella Font, N.; Gilmour, R.; Jiménez-Barbero, J.; Blériot, Y.; Thibaudeau, S., Angew. Chem. Int. Ed. 2019, 58, 13758-13762.
    [60] Marianski, M.; Mucha, E.; Greis, K.; Moon, S.; Pardo, A.; Kirschbaum, C.; Thomas, D. A.; Meijer, G.; von Helden, G.; Gilmore, K.; Seeberger, P. H.; Pagel, K., Angew. Chem. Int. Ed. 2020, 59, 6166-6171.
    [61] Upadhyaya, K.; Subedi, Y. P.; Crich, D., Angew. Chem. Int. Ed. 2021, 60, 25397-25403.
    [62] Elferink, H.; Severijnen, M. E.; Martens, J.; Mensink, R. A.; Berden, G.; Oomens, J.; Rutjes, F. P. J. T.; Rijs, A. M.; Boltje, T. J., J. Am. Chem. Soc. 2018, 140, 6034-6038.
    [63] de Kleijne, F. F. J.; Elferink, H.; Moons, S. J.; White, P. B.; Boltje, T. J., Angew. Chem. Int. Ed. 2022, 61, DOI:doi.org/10.1002/anie.202109874
    [64] Fraser-Reid, B.; López, J. C., Armed–Disarmed Effects in Carbohydrate Chemistry: History, Synthetic and Mechanistic Studies. In Reactivity Tuning in Oligosaccharide Assembly. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011, pp 1-29.
    [65] Fraser-Reid, B.; Wu, Z.; Udodong, U. E.; Ottosson, H., J. Org. Chem. 1990, 55, 6068-6070.
    [66] Sinnott, M. L., Chem. Rev. 1990, 90, 1171-1202.
    [67] Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H., J. Am. Chem. Soc. 1999, 121, 734-753.
    [68] van der Vorm, S.; Hansen, T.; van Hengst, J. M. A.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C., Chem. Soc. Rev. 2019, 48, 4688-4706.
    [69] Tsutsui, M.; Sianturi, J.; Masui, S.; Tokunaga, K.; Manabe, Y.; Fukase, K., Eur. J. Org. Chem. 2020, 2020, 1802-1810.
    [70] Zhang, Z.; Wong, C.-H., Tetrahedron Lett. 2002, 58, 6513-6519.
    [71] Wang, Z.; Zhou, L.; El-Boubbou, K.; Ye, X.-S.; Huang, X., J. Org. Chem. 2007, 72, 6409-6420.
    [72] Lecourt, T.; Herault, A.; Pearce, A. J.; Sollogoub, M.; Sinaÿ, P., Chem. Eur. J. 2004, 10, 2960-2971.

    無法下載圖示 電子全文延後公開
    2027/07/08
    QR CODE