簡易檢索 / 詳目顯示

研究生: 陳彥宇
Yan-Yu Chen
論文名稱: 催化抑制動力系統的解的爆破行為
Blow-up behavior for solution of a kinetic activator-inhibitor system
指導教授: 郭忠勝
Guo, Jong-Shenq
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 15
中文關鍵詞: 催化劑-抑制劑動力系統同時爆破非同時爆破爆破速率
英文關鍵詞: activator-inhibitor, kinetic system, simultaneous blow-up, non-simultaneous blow-up, blow-up rate
論文種類: 學術論文
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究有關一個催化劑-抑制劑之動力系統的爆破行為。首先,我們給爆破解存在的充分條件。而爆破解的行為分為同時爆破及非同時爆破兩種情況。然後,我們得到他們的爆破速率。最後,我們證明對於任意給定的爆破時間,同時爆破或非同時爆破解的存在性。

    We study the blow-up behaviors of solutions for a kinetic system related to an activator-inhibitor system. First, we give a sufficient condition for the existence of blow-up solutions. There are cases of simultaneous and non-simultaneous blow-up. We then derive the blow-up rates for both cases. Finally, we prove the existence of simultaneous and non-simultaneous blow-up solutions for any given blow-up time.

    1.Introduction ..............................1 2.Sufficient conditions for the existence of blowup solutions .............................2 3.Blow-up rate estimates .................................3 4.Existence of blow-up solutions ................................8

    [1]C. Brandle, F. Quiros and J.D. Rossi, Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary, Comm. Pure Appl. Anal. (2005), 523-536.

    [2] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) (1972), 30-39.

    [3]J-S. Guo, S. Sasayama, C.-J. Wang, Blow up rate estimate for a system of semilinear parabolic equation, Comm. Pure Appl. Anal. (2009), 711-718.

    [4]H. Li and M. Wang, Blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions, J. Math. Anal. Appl. (2005), 96-114.

    [5] W.M. Ni, K. Suzuki, I. Takagi, The dynamic of a kinetic activator-inhibitor system, J. Diff. Equations (2006), 426-465.

    [6]M. Wang, Blow-up rate estimates for semilinear parabolic systems, J. Diff. Equations (2001), 317-324.

    [7]M. Wang, Blow-up rate for a semilinear reaction diffusion system, Computers Math. Appl. (2002), 573-585.

    [8]M. Wang, Blow-up rates for semilinear parabolic systems with nonlinear boundary conditions, Applied Math. Letters (2003), 543-549.

    [9]Z. Xiang and C. Mu, Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux,
    Comm. Pure Appl. Anal. (2007), 487-503.

    [10]S. Zheng and L. Qiao, Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux, Comm. Pure Appl. Anal. (2007), 1113-1129.

    下載圖示
    QR CODE