研究生: |
施喬偉 Shih, Jaio-Wei |
---|---|
論文名稱: |
中草藥 TRM01 之抗非小細胞肺癌研究 Investigation of anti-non small cell lung cancer by Chinese herbal medicine, TRM01 |
指導教授: |
林榮耀
Lin, Jung-Yaw |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 非小細胞肺癌 、中草藥 、血管新生 、細胞遷移 、細胞凋亡 、表皮生長因子 |
英文關鍵詞: | non-small cell lung cancer, Chinese herbal medicine, angiogenesis, cell migration, apoptosis, epidermal growth factor |
DOI URL: | https://doi.org/10.6345/NTNU202202973 |
論文種類: | 學術論文 |
相關次數: | 點閱:141 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症一直是世界上致死率最高的疾病,而肺癌更是其中的佼佼者,不論是在 世界上或是台灣,肺癌都是高居十大癌症死因的榜首。根據病理學的型態分類大 致上可以將肺癌分成兩種:非小細胞肺癌(85 %)以及小細胞肺癌(15 %)。在 約 80 %非小細胞肺癌病人身上可以發現表皮細胞生長受體(EGFR)有過度活化 的現象,而導致此現象大多是由於 Exon 19 上的缺失或是 Exon 21 上的 L858R 點突變造成,這些突變會導致細胞癌化並且導致腫瘤的產生以及轉移。在現今的 治療中對非小細胞肺癌的治療主要是手術治療輔以標靶治療,隨著越來越多的小 分子藥物的開發,現在已有開發出表皮細胞生長受體的激酶抑制劑(kinase inhibitor)如 geftinib 以及 erlotinib。但是藥物的使用治療,在臨床上也發現病人 在使用抑制劑之後會在 Exon 20 產生另一個點突變 T790M,而此一突變會導致病 人產生抗藥性以及癌症復發。
科學界近年來一直致力於將中草藥開發應用於治療癌症上,因此本研究希望 可以找到治療非小細胞肺癌的中草藥。本研究從七種中草藥中找到 TRM01 具有 抑制帶有 T790M/L858R 兩種點突變的非小細胞癌細胞株 H1975 生長的中草藥, 也發現 TRM01 可以抑制 EGFR 的表現並能透過 Bcl-2/Caspase-9 訊息傳遞路徑引 起細胞的凋亡(Apoptosis)。另一方面本研究也發現 TRM01 可以透過調控 FAK 的活性來抑制 Rho-family 蛋白的活性以及抑制 EMT 蛋白(N-cadherin、 Fibronectin)的表現來降低 H1975 細胞的遷移(Migration)能力,同時也有發 現 TRM01 具有可以透過調控 AKT/mTOR 訊息傳遞(p-4EBP1、HIF1a)的表現 來抑制癌細胞血管新生的能力。此外本研究藉由動物異種移植(Xenograft)模式,將 H1975 細胞注入小鼠皮下來探討 TRM01 是否可以在活體(In vivo)內抑制腫 瘤生長,結果顯示 TRM01 可以在活體內抑制腫瘤生長。
根據以上的實驗結果,此研究證實 TRM01 具有抑制非小細胞肺癌的血管新 生以及轉移的能力及動物實驗也有抑制腫瘤生長效果,因此在往後的藥物開發以 及腫瘤治療上是具有高度潛力的中草藥物。
Lung cancer is the most common cancer throughout the world and in Taiwan. There are two major forms of lung cancer, which are small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Overexpression of epidermal growth factor receptor (EGFR) can be observed in up to 80 % of NSCLC patients that is known to be highly correlated with the in-frame deletion in exon 19 or L858R mutation in exon 21.
Accordingly, EGFR tyrosine kinase inhibitors (TKIs) are used to treat NSCLC patients having EGFR mutations. However, the occurrence of acquired resistance to EGFR TKIs leads to the treatment failure, and a secondary mutation (T790M in exon 20) is believed to be an underlying mechanism of resistance. Therefore, it is of urgent need to develop a novel medicine for NSCLC patients, who have the EGFR TKI-resistant.
In present study, we identified the most effective Chinese herbal, medicine (CHM) TRM01extracts from seven aqueous of CHM extracts, and TRM01 could selectively inhibit the growth of gefitinib-resistant H1975 cell line harboring EGFR T790M/L858R mutations. The exposure of H1975 cells to TRM01 induced apoptosis mediated by inhibiting EGFR and Bcl-2/Caspase-9 activity. Furthermore, the treatment of TRM01 extracts inhibited H1975 cells migration, through regulating FAK to repress Rho-family protein activities and inhibit EMT protein markers expression. TRM01 also has the inhibitory effects on the angiogenesis of cancer cells by regulating the activity of AKT/mTOR signaling. Furthermore, treatment of TRM01 on xenograft mouse model showed that TRM01 inhibited tumor growth in vivo. Taken together, present study demonstrated that TRM01 inhibited angiogenesis and metastasis of the cell line, H1975 of NSCLC and in vivo, and therefore TRM01 could be developed as a potential cancer treatment for lung cancer.
1. Engelman, J. A., Mukohara, T., Zejnullahu, K., Lifshits, E., Borras, A. M., Gale, C. M., Naumov, G. N., Yeap, B. Y., Jarrell, E., Sun, J., Tracy, S., Zhao, X., Heymach, J. V., Johnson, B. E., Cantley, L. C., and Janne, P. A. (2006) Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. The Journal of clinical investigation 116, 2695-2706
2. Gandhi, J., Zhang, J., Xie, Y., Soh, J., Shigematsu, H., Zhang, W., Yamamoto, H., Peyton, M., Girard, L., Lockwood, W. W., Lam, W. L., Varella-Garcia, M., Minna, J. D., and Gazdar, A. F. (2009) Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PloS one 4, e4576
3. Ulivi, P., Calistri, D., Zoli, W., and Amadori, D. (2010) Predictive molecular markers for EGFR-TKI in non-small cell lung cancer patients: new insights and critical aspects. Journal of Nucleic Acids Investigation 1, 10
4. Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. G., and Varmus, H. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PloS medicine 2, e73
5. Pao, W., and Chmielecki, J. (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nature reviews. Cancer 10, 760-774
6. Sudo, M., Chin, T. M., Mori, S., Doan, N. B., Said, J. W., Akashi, M., and Koeffler, H. P. (2013) Inhibiting proliferation of gefitinib-resistant, non-small cell lung cancer. Cancer chemotherapy and pharmacology 71, 1325-1334
7. Guo, A., Villen, J., Kornhauser, J., Lee, K. A., Stokes, M. P., Rikova, K., Possemato, A., Nardone, J., Innocenti, G., Wetzel, R., Wang, Y., MacNeill, J., Mitchell, J., Gygi, S. P., Rush, J., Polakiewicz, R. D., and Comb, M. J. (2008) Signaling networks assembled by oncogenic EGFR and c-Met. Proceedings of the National Academy of Sciences of the United States of America 105, 692-697
8. Engelman, J. A., Zejnullahu, K., Gale, C. M., Lifshits, E., Gonzales, A. J., Shimamura, T., Zhao, F., Vincent, P. W., Naumov, G. N., Bradner, J. E., Althaus, I. W., Gandhi, L., Shapiro, G. I., Nelson, J. M., Heymach, J. V., Meyerson, M., Wong, K. K., and Janne, P. A. (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer research 67, 11924-11932
9. Van Schaeybroeck, S., Kyula, J., Kelly, D. M., Karaiskou-McCaul, A., Stokesberry, S. A., Van Cutsem, E., Longley, D. B., and Johnston, P. G. (2006) Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells. Molecular cancer therapeutics 5, 1154-1165
10. La Monica, S., Galetti, M., Alfieri, R. R., Cavazzoni, A., Ardizzoni, A., Tiseo, M., Capelletti, M., Goldoni, M., Tagliaferri, S., Mutti, A., Fumarola, C., Bonelli, M., Generali, D., and Petronini, P. G. (2009) Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochemical pharmacology 78, 460-468
11. Lee, M. S., Kim, H. P., Kim, T. Y., and Lee, J. W. (2012) Gefitinib resistance of cancer cells correlated with TM4SF5-mediated epithelial-mesenchymal transition. Biochimica et biophysica acta 1823, 514-523
12. Yu, C., Liu, S. L., Qi, M. H., Zou, X., Wu, J., and Zhang, J. (2015) Herbal medicine Guan Chang Fu Fang enhances 5-fluorouracil cytotoxicity and affects drug-associated genes in human colorectal carcinoma cells. Oncology letters 9, 701-708
13. Lai, Y. H., Yu, S. L., Chen, H. Y., Wang, C. C., Chen, H. W., and Chen, J. J. (2013) The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer. Carcinogenesis 34, 1069-1080
14. Zheng, Y. M., Shen, J. Z., Wang, Y., Lu, A. X., and Ho, W. S. (2015) Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology 23, 1267-1274
15. Fischer, K. R., Durrans, A., Lee, S., Sheng, J., Li, F., Wong, S. T., Choi, H., El Rayes, T., Ryu, S., Troeger, J., Schwabe, R. F., Vahdat, L. T., Altorki, N. K., Mittal, V., and Gao, D. (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472-476
16. Feng, Z. J., Gao, S. B., Wu, Y., Xu, X. F., Hua, X., and Jin, G. H. (2010) Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP beta/zeta signaling by menin. Oncogene 29, 5416-5426
17. Kaibuchi, K., Kuroda, S., and Amano, M. (1999) Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annual review of biochemistry 68, 459-486
18. Ku, C. Y., Wang, Y. R., Lin, H. Y., Lu, S. C., and Lin, J. Y. (2015) Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway. PloS one 10, e0126725
19. Thiery, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890
20. Yamaguchi, H., Wyckoff, J., and Condeelis, J. (2005) Cell migration in tumors. Current opinion in cell biology 17, 559-564
21. Chen, W. J., Ho, C. C., Chang, Y. L., Chen, H. Y., Lin, C. A., Ling, T. Y., Yu, S. L., Yuan, S. S., Chen, Y. J., Lin, C. Y., Pan, S. H., Chou, H. Y., Chen, Y. J., Chang, G. C., Chu, W. C., Lee, Y. M., Lee, J. Y., Lee, P. J., Li, K. C., Chen, H. W., and Yang, P. C. (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nature communications 5, 3472
22. Bustelo, X. R., Sauzeau, V., and Berenjeno, I. M. (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays 29, 356-370
23. Wang, B. Y., Huang, J. Y., Cheng, C. Y., Lin, C. H., Ko, J., and Liaw, Y. P. (2013) Lung cancer and prognosis in taiwan: a population-based cancer registry. Journal of thoracic oncology 8, 1128-1135
24. Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T., and De Bruijn, E. A. (2004) Vascular endothelial growth factor and angiogenesis. Pharmacological reviews 56, 549-580
25. Claesson-Welsh, L., and Welsh, M. (2013) VEGFA and tumour angiogenesis. Journal of internal medicine 273, 114-127
26. Hsieh, A. C., Liu, Y., Edlind, M. P., Ingolia, N. T., Janes, M. R., Sher, A., Shi, E. Y., Stumpf, C. R., Christensen, C., Bonham, M. J., Wang, S., Ren, P., Martin, M., Jessen, K., Feldman, M. E., Weissman, J. S., Shokat, K. M., Rommel, C., and Ruggero, D. (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485, 55-61
27. Welti, J., Loges, S., Dimmeler, S., and Carmeliet, P. (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. The Journal of clinical investigation 123, 3190-3200
28. Kuzumaki, N., Suzuki, A., Narita, M., Hosoya, T., Nagasawa, A., Imai, S., Yamamizu, K., Morita, H., Suzuki, T., Okada, Y., Okano, H. J., Yamashita, J. K., Okano, H., and Narita, M. (2012) Multiple analyses of G-protein coupled receptor (GPCR) expression in the development of gefitinib-resistance in transforming non-small-cell lung cancer. PloS one 7, e44368
29. Sordella, R., Bell, D. W., Haber, D. A., and Settleman, J. (2004) Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163-1167
30. Padfield, E., Ellis, H. P., and Kurian, K. M. (2015) Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Frontiers in oncology 5, 5
31. Hanahan, D., and Coussens, L. M. (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer cell 21, 309-322
32. Wennerberg, K., and Der, C. J. (2004) Rho-family GTPases: it's not only Rac and Rho (and I like it). Journal of cell science 117, 1301-1312
33. Hall, A. (2012) Rho family GTPases. Biochemical society transactions 40, 1378-1382
34. Liu, R. Y., Zeng, Y., Lei, Z., Wang, L., Yang, H., Liu, Z., Zhao, J., and Zhang, H. T. (2014) JAK/STAT3 signaling is required for TGF-beta-induced epithelial-mesenchymal transition in lung cancer cells. International journal of oncology 44, 1643-1651
35. Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., Somcio, R., Bauer, T. W., Wu, Y., Hicklin, D. J., and Ellis, L. M. (2006) Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer research 66, 46-51
36. Wu, Y. C., Tang, S. J., Sun, G. H., and Sun, K. H. (2015) CXCR7 mediates TGFbeta1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 35, 2123-2132
37. Hassan, W. A., Yoshida, R., Kudoh, S., Hasegawa, K., Niimori-Kita, K., and Ito, T. (2014) Notch1 controls cell invasion and metastasis in small cell lung carcinoma cell lines. Lung cancer 86, 304-310
38. Jin, M. M., Ye, Y. Z., Qian, Z. D., and Zhang, Y. B. (2015) Notch signaling molecules as prognostic biomarkers for non-small cell lung cancer. Oncology letters 10, 3252-3260
39. Albini, A., Tosetti, F., Li, V. W., Noonan, D. M., and Li, W. W. (2012) Cancer prevention by targeting angiogenesis. Nature reviews. Clinical oncology 9, 498-509
40. Barron, C. C., Moore, J., Tsakiridis, T., Pickering, G., and Tsiani, E. (2014) Inhibition of human lung cancer cell proliferation and survival by wine. Cancer cell international 14, 6
41. Yang, L. L., Liu, B. C., Lu, X. Y., Yan, Y., Zhai, Y. J., Bao, Q., Doetsch, P. W., Deng, X., Thai, T. L., Alli, A. A., Eaton, D. C., Shen, B. Z., and Ma, H. P. (2017) Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion. Oncotarget 8, 5123-5134
42. Tsai, W. B., Aiba, I., Long, Y., Lin, H. K., Feun, L., Savaraj, N., and Kuo, M. T. (2012) Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to arginine deiminase resistance in melanoma cells. Cancer research 72, 2622-2633
43. Chi, F., Wu, R., Jin, X., Jiang, M., and Zhu, X. (2016) HER2 induces cell proliferation and invasion of non-small-cell lung cancer by upregulating COX-2 expression via MEK/ERK signaling pathway. OncoTargets and therapy 9, 2709-2716
44. Malumbres, M., and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9, 153-166
45. Bertoli, C., Skotheim, J. M., and de Bruin, R. A. (2013) Control of cell cycle transcription during G1 and S phases. Nature reviews. Molecular cell biology 14, 518-528
46. Chen, P. T., Chen, Z. T., Hou, W. C., Yu, L. C., and Chen, R. P. (2016) Polyhydroxycurcuminoids but not curcumin upregulate neprilysin and can be applied to the prevention of Alzheimer's disease. Scientific reports 6, 29760
47. Jung, S. K., Lee, M. H., Lim, D. Y., Kim, J. E., Singh, P., Lee, S. Y., Jeong, C. H., Lim, T. G., Chen, H., Chi, Y. I., Kundu, J. K., Lee, N. H., Lee, C. C., Cho, Y. Y., Bode, A. M., Lee, K. W., and Dong, Z. (2014) Isoliquiritigenin induces apoptosis and inhibits xenograft tumor growth of human lung cancer cells by targeting both wild type and L858R/T790M mutant EGFR. Journal of Biological Chemistry 289, 35839-35848
48. Gazdar, A. F. (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28, 24-31
49. Bian, D., Mahanivong, C., Yu, J., Frisch, S. M., Pan, Z. K., Ye, R. D., and Huang, S. (2006) The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25, 2234-2244
50. Zavadil, J., and Bottinger, E. P. (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24, 5764-5774
51. Pang, M. F., Georgoudaki, A. M., Lambut, L., Johansson, J., Tabor, V., Hagikura, K., Jin, Y., Jansson, M., Alexander, J. S., Nelson, C. M., Jakobsson, L., Betsholtz, C., Sund, M., Karlsson, M. C., and Fuxe, J. (2016) TGF-beta1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35, 748-760
52. Zhang, Y., Jain, R., and Zhu, M. (2015) Recent progress and advances in HGF/MET-Targeted therapeutic agents for cancer treatment. Biomedicines 3, 149-181
53. Holmes, K., Roberts, O. L., Thomas, A. M., and Cross, M. J. (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling 19, 2003-2012
54. Hara, K., Yonezawa, K., Kozlowski, M. T., Sugimoto, T., Andrabi, K., Weng, Q. P., Kasuga, M., Nishimoto, I., and Avruch, J. (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. The Journal of biological chemistry 272, 26457-26463
55. Weis, S. M., and Cheresh, D. A. (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nature medicine 17, 1359-1370
56. Wang, X., McCullough, K. D., Franke, T. F., and Holbrook, N. J. (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. The Journal of biological chemistry 275, 14624-14631