簡易檢索 / 詳目顯示

研究生: 黃冠博
Huang, Guan-Bo
論文名稱: 以穩定碳氮同位素探討雙連埤浮島養分來源
Using stable carbon and nitrogen isotopes to investigate plant nutrient uptake on Shuang-lian-pi floating island
指導教授: 林登秋
Lin, Teng-Chiu
口試委員: 林登秋
Lin, Teng-Chiu
李佩珍
Lee, Pei-Jen
陳子英
Chen, Tze-Ying
口試日期: 2024/07/29
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 48
中文關鍵詞: 浮島植物經濟譜穩定同位素示蹤劑δ15N植物功能性狀
英文關鍵詞: floating islands, plant economic spectrum, stable isotope, tracer, δ15N, plant functional traits
DOI URL: http://doi.org/10.6345/NTNU202401488
論文種類: 學術論文
相關次數: 點閱:261下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 浮島是由水生植物的根系以及有機物殘質所構成,在全球熱帶與亞熱帶溼地中常見的地景。浮島的增長可能會限制湖泊的可達性,佔據沉水植物和挺水植物適合的棲地,然而浮島在改善環境與水質上有重要的作用。近來,浮島被認為是一種環境議題的自然解方,不但能增加湖域的水質、生物多樣性更能提供美學價值。浮島上的水生植物氮的主要來源究竟是浮島的基質或者是湖水與其對環境變遷如大氣沉降的反應有密切的關係,但少有研究觸,故為本研究欲探討的議題。不同來源的氮素常具有不同之穩定同位素比值(δ),因此透過分析植物、浮島基質以及湖水的氮穩定同位素,可估算浮島植物運用了多少湖域來源的氮和浮島本身產出的氮素。另外除了測量穩定同位素比值的天然含量外,主動添加高濃度氮穩定同位素比值的追蹤劑,透過定量的實驗的投放,可以增加穩定同位素的訊號,有助於進一步釐清氮素在浮島上的移動狀況,並可以與穩定同位素的天然含量做比較是否有相同的趨勢存在。另外本研究收集了環境因子與植物功能性狀,希望能了解造成δ15N變化的原因。結果顯示,δ15N在物種間有顯著的差異,鄰近水域的物種有較高的δ15N,顯示浮島與湖域之間的氮素因為不同的循環路徑而有不同的訊號;物種間δ15N的含量有顯著差異,藉由多元線性回歸分析發現δ15N與,物種、比葉面積、葉乾物質量和菌根類型有顯著的相關,並且也受到土壤水pH、電導度等環境因子的影響δ15N有顯著的影響,物種間δ15N的差異或與其功能性狀的差異有關,而所量測的功能性狀和植物經濟譜(plant economics spectrum)有密切的關係。雙來源混合模型的結果顯示,浮島上的植物約有56.9%的氮源來自浮島的土壤,43.1%來自湖水中。δ15N的追蹤劑實驗結果示縱劑很快速的進入湖水、土壤跟水中的有機物中。比較2022與2024的兩次實驗可以發現,雙連埤湖域的同位素結構有著非常劇烈的變化,值得進一步探討造成其變化的是因為外來的汙染,或是湖水養分循環的變化。

    Floating islands are composed of the root systems of aquatic plants and organic debris, and they are commonly found in tropical and subtropical wetlands around the world. The expansion of these islands may limit lake accessibility and occupy habitats suitable for submerged and emergent plants. However, floating islands play an important role in improving the environment and water quality. Recently, they have been regarded as a natural solution to environmental issues, as they not only enhance water quality and biodiversity but also provide aesthetic value. How macrophytes growing on floating islands acquire nutrients in this unique environment is an important question because it helps to predict the response of the macrophytes to environmental change such as atmospheric deposition of nutrients but is rarely studied. Different sources of nutrients such as nitrogen have different abundance of stable isotope ratios so that through stable isotope analysis, we can distinguish nitrogen sources, mainly the island and the lake sources. In addition to measuring the natural abundance of stable isotopes, adding nitrogen enriched in 15N ratio (δ) can help to better understand nitrogen cycling. I also collected environmental factors and plant functional traits and explored their relationships to δ15N variations.
    The results showed significant differences in δ15N among plant species. Species near the water had higher δ15N, indicating different nitrogen cycles between the floating islands and the lake. Multiple linear regression analysis revealed that δ15N was significantly correlated with species, specific leaf area, leaf dry matter content, and mycorrhizal type. δ15N was also significantly affected by environmental factors such as soil water pH and conductivity. The differences in δ15N among species are probably related to differences in their functional traits, which are closely related to the plant economics spectrum.
    The results of the dual-source mixing model showed that approximately 56.9% of the nitrogen source for the plants on the floating islands came from the soil/substrate of the islands, while 43.1% came from the lake water. The tracer experiment results showed that the tracer quickly entered the lake water, soil, and organic matter. Comparison of the experiments conducted in 2022 and 2024 reveals significant changes in the isotopic structure of the Shuang-lian-pi Lake area. It is worth further investigating whether these changes are due to external pollution or variations in the nutrient cycling of the lake water.

    表次vii 圖次viii 第一章、緒論 1 第一節 研究動機與目的 1 第二節 穩定同位素在生態學上的應用 3 第三節 植物功能性狀 9 第二章、材料與方法 11 第一節 研究地點與降水資料 11 第二節 浮島植物之穩定同位素自然豐度 13 第三節 穩定同位素示縱劑實驗 17 第四節 數據分析 19 第三章、結果 20 第一節 穩定同位素之自然豐度 20 第二節 穩定同位素示縱劑實驗 27 第四章、討論 29 第一節 穩定同位素之自然豐度與環境因子之關聯 29 第二節 穩定同位素混合模型與養分來源 32 第三節 穩定同位素示縱劑實驗 32 第五章、結論 34 第六章、未來研究建議 35 參考文獻 37

    阮忠信、陳子英、毛俊傑、陳永松、郭鍾秀(2007) 雙連埤整體發展先期計畫:湖沼生態系之監測與基礎資料建立。
    黃國文 (2021)109-110 年度雙連埤重要濕地(國家級)生態、水質、水文、濕地環境教育及社區參與計畫。 國立臺灣大學。
    Armengol, X., Wurtsbaugh, W. A., Camacho, A., & Miracle, M. R. (2012). Pseudo-diel vertical migration in zooplankton: A whole-lake 15N tracer experiment. Journal of Plankton Research, 34(11), 976–986. https://doi.org/10.1093/plankt/fbs058
    Ashkenas, L. R., Johnson, S. L., Gregory, S. V., Tank, J. L., & Wollheim, W. M. (2004). A stable isotope tracer study of nitrogen uptake and transformation in an old-growth forest stream. Ecology, 85(6), 1725–1739. https://doi.org/10.1890/03-0032
    Bedford, B. L., Walbridge, M. R., & Aldous, A. (1999). Patterns in nutrient availability and plant diversity of temperate north American wetlands. Ecology, 80(7), 2151–2169. https://doi.org/10.1890/0012-9658(1999)080[2151:PINAAP]2.0.CO;2
    Blumenthal, D. M., Mueller, K. E., Kray, J. A., Ocheltree, T. W., Augustine, D. J., & Wilcox, K. R. (2020). Traits link drought resistance with herbivore defense and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. Journal of Ecology, 108(6), 2336–2351. https://doi.org/10.1111/1365-2745.13454
    Bowden, W. B. (1987). The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry, 4(3), 313–348. https://doi.org/10.1007/BF02187373
    Brown, R. H. (1978). A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Science, 18(1), cropsci1978.0011183X001800010025x. https://doi.org/10.2135/cropsci1978.0011183X001800010025x
    Cardon, Z. G., Mott, K. A., & Berry, J. A. (1994). Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques. Plant, Cell & Environment, 17(9), 995–1007. https://doi.org/10.1111/j.1365-3040.1994.tb02033.x
    Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389(6647), Article 6647. https://doi.org/10.1038/38229
    Chlot, S., Widerlund, A., & Öhlander, B. (2015). Nitrogen uptake and cycling in Phragmites australis in a lake-receiving nutrient-rich mine water: A 15N tracer study. Environmental Earth Sciences, 74(7), 6027–6038. https://doi.org/10.1007/s12665-015-4626-x
    Craine, J. M., Elmore, A. J., Aidar, M. P. M., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., Nardoto, G. B., Pardo, L. H., Peñuelas, J., Reich, P. B., Schuur, E. A. G., Stock, W. D., Templer, P. H., Virginia, R. A., Welker, J. M., & Wright, I. J. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4), 980–992. https://doi.org/10.1111/j.1469-8137.2009.02917.x
    Craine, J. M., Tilman, D., Wedin, D., Reich, P., Tjoelker, M., & Knops, J. (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16(5), 563–574. https://doi.org/10.1046/j.1365-2435.2002.00660.x
    Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models of stomatal conductance at the leaf level. Plant, Cell & Environment, 33(9), 1419–1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x
    Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33(1), 507–559. https://doi.org/10.1146/annurev.ecolsys.33.020602.095451
    Donovan, L. A., Maherali, H., Caruso, C. M., Huber, H., & Kroon, H. de. (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 26(2), 88–95. https://doi.org/10.1016/j.tree.2010.11.011
    Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J., Zhao, X., Xia, N., Wu, X., & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13(3), 221–226. https://doi.org/10.1038/s41561-019-0530-4
    Epstein, D. M., Wurtsbaugh, W. A., & Baker, M. A. (2012). Nitrogen partitioning and transport through a subalpine lake measured with an isotope tracer. Limnology and Oceanography, 57(5), 1503–1516. https://doi.org/10.4319/lo.2012.57.5.1503
    Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78(1), 9–19. https://doi.org/10.1007/BF00377192
    Evans, J. R., & Clarke, V. C. (2019). The nitrogen cost of photosynthesis. Journal of Experimental Botany, 70(1), 7–15. https://doi.org/10.1093/jxb/ery366
    Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443
    Ferrio, J. P., Aguilera, M., Voltas, J., & Araus, J. L. (2020). Chapter Three—Stable carbon isotopes in archaeological plant remains. In M. Montenari (Ed.), Stratigraphy & Timescales (Vol. 5, pp. 107–145). Academic Press. https://doi.org/10.1016/bs.sats.2020.08.008
    Filoso, S., Martinelli, L. A., Howarth, R. W., Boyer, E. W., & Dentener, F. (2006). Human activities changing the nitrogen cycle in Brazil. In L. A. Martinelli & R. W. Howarth (Eds.), Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls (pp. 61–89). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5517-1_4
    Gannes, L. Z., del Rio, C. M., & Koch, P. (1998). Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 119(3), 725–737. https://doi.org/10.1016/S1095-6433(98)01016-2
    Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B. D., Martin, M., Hollinger, D. Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., Munger, J. W., Novick, K., & Richardson, A. D. (2019). Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proceedings of the National Academy of Sciences, 116(34), 16909–16914. https://doi.org/10.1073/pnas.1905912116
    Hadwen, W. L., & Bunn, S. E. (2005). Food web responses to low-level nutrient and 15N-tracer additions in the littoral zone of an oligotrophic dune lake. Limnology and Oceanography, 50(4), 1096–1105. https://doi.org/10.4319/lo.2005.50.4.1096
    Hobbie, E. A., & Högberg, P. (2012). Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytologist, 196(2), 367–382. https://doi.org/10.1111/j.1469-8137.2012.04300.x
    Högberg, P. (1997). Tansley Review No. 95 15N natural abundance in soil-plant systems. New Phytologist, 137(2), 179–203. https://doi.org/10.1046/j.1469-8137.1997.00808.x
    Högberg, P., Näsholm, T., Franklin, O., & Högberg, M. N. (2017). Tamm Review: On the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. Forest Ecology and Management, 403, 161–185. https://doi.org/10.1016/j.foreco.2017.04.045
    Howard-Williams, C. (1985). Cycling and retention of nitrogen and phosphorus in wetlands: A theoretical and applied perspective. Freshwater Biology, 15(4), 391–431. https://doi.org/10.1111/j.1365-2427.1985.tb00212.x
    Hu, Y.-K., Liu, G.-F., Pan, X., Song, Y.-B., Dong, M., & Cornelissen, J. H. C. (2022). Contrasting nitrogen cycling between herbaceous wetland and terrestrial ecosystems inferred from plant and soil nitrogen isotopes across China. Journal of Ecology, 110(6), 1259–1270. https://doi.org/10.1111/1365-2745.13866
    Inácio, C. T., Chalk, P. M., & Magalhães, A. M. T. (2015). Principles and Limitations of Stable Isotopes in Differentiating Organic and Conventional Foodstuffs: 1. Plant Products. Critical Reviews in Food Science and Nutrition, 55(9), 1206–1218. https://doi.org/10.1080/10408398.2012.689380
    Jones, D. L., Healey, J. R., Willett, V. B., Farrar, J. F., & Hodge, A. (2005). Dissolved organic nitrogen uptake by plants—An important N uptake pathway? Soil Biology and Biochemistry, 37(3), 413–423. https://doi.org/10.1016/j.soilbio.2004.08.008
    Kahmen, A., Wanek, W., & Buchmann, N. (2008). Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia, 156(4), 861–870. https://doi.org/10.1007/s00442-008-1028-8
    Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107(46), 19691–19695. https://doi.org/10.1073/pnas.1004933107
    Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: From general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12(12), 474–478. https://doi.org/10.1016/S0169-5347(97)01219-6
    Lawson, T., & Vialet-Chabrand, S. (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221(1), 93–98. https://doi.org/10.1111/nph.15330
    LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology, 89(2), 371–379. https://doi.org/10.1890/06-2057.1
    Legay, N., Clément, J. C., Grassein, F., Lavorel, S., Lemauviel-Lavenant, S., Personeni, E., Poly, F., Pommier, T., Robson, T. M., Mouhamadou, B., & Binet, M. N. (2020). Plant growth drives soil nitrogen cycling and N-related microbial activity through changing root traits. Fungal Ecology, 44, 100910. https://doi.org/10.1016/j.funeco.2019.100910
    Li, Q., Wen, J., Zhao, C.-Z., Zhao, L.-C., & Ke, D. (2022). The relationship between the main leaf traits and photosynthetic physiological characteristics of Phragmites australis under different habitats of a salt marsh in Qinwangchuan, China. AoB PLANTS, 14(6), plac054. https://doi.org/10.1093/aobpla/plac054
    Lichstein, J. W., Peterson, B. T., Langebrake, J., & McKinley, S. A. (2021). Leaf economics of early- and late-successional plants. The American Naturalist, 198(3), 347–359. https://doi.org/10.1086/715453
    Lin, T.-C., Shaner, P., Wang, L.-J., Shih, Y.-T., Wang, C.-P., Huang, G.-H., & Huang, J.-C. (2015). Effects of mountain agriculture on nutrient cycling at upstream watersheds. Hydrology & Earth System Sciences Discussions, 12(5).
    Luo, F.-L., Huang, L., Lei, T., Xue, W., Li, H.-L., Yu, F.-H., & Cornelissen, J. H. C. (2016). Responsiveness of performance and morphological traits to experimental submergence predicts field distribution pattern of wetland plants. Journal of Vegetation Science, 27(2), 340–351. https://doi.org/10.1111/jvs.12352
    Marino, G., Aqil, M., & Shipley, B. (2010). The leaf economics spectrum and the prediction of photosynthetic light–response curves. Functional Ecology, 24(2), 263–272. https://doi.org/10.1111/j.1365-2435.2009.01630.x
    Martínez-Espinosa, C., Sauvage, S., Al Bitar, A., Green, P. A., Vörösmarty, C. J., & Sánchez-Pérez, J. M. (2021). Denitrification in wetlands: A review towards a quantification at global scale. Science of The Total Environment, 754, 142398. https://doi.org/10.1016/j.scitotenv.2020.142398
    McCoy-Sulentic, M. E., Kolb, T. E., Merritt, D. M., Palmquist, E. C., Ralston, B. E., & Sarr, D. A. (2017). Variation in species-level plant functional traits over wetland indicator status categories. Ecology and Evolution, 7(11), 3732–3744. https://doi.org/10.1002/ece3.2975
    McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002
    McNeill, A., & Unkovich, M. (2007). The Nitrogen Cycle in Terrestrial Ecosystems. In P. Marschner & Z. Rengel (Eds.), Nutrient Cycling in Terrestrial Ecosystems (Vol. 10, pp. 37–64). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_2
    Michelsen, A., Quarmby, C., Sleep, D., & Jonasson, S. (1998). Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia, 115(3), 406–418. https://doi.org/10.1007/s004420050535
    Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., & Norberg, J. (2017). Towards a trait-based ecology of wetland vegetation. Journal of Ecology, 105(6), 1623–1635. https://doi.org/10.1111/1365-2745.12734
    Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., & Philippot, L. (2019). A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 33(4), 540–552. https://doi.org/10.1111/1365-2435.13303
    Morris, E. P., Peralta, G., Van Engeland, T., Bouma, T. J., Brun, F. G., Lara, M., Hendriks, I. E., Benavente, J., Soetaert, K., Middelburg, J. J., & Lucas Perez-Llorens, J. (2013). The role of hydrodynamics in structuring in situ ammonium uptake within a submerged macrophyte community. Limnology and Oceanography: Fluids and Environments, 3(1), 210–224. https://doi.org/10.1215/21573689-2397024
    Nacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1), 1–29. https://doi.org/10.1007/s11104-013-1645-9
    Nock, C. A., Vogt, R. J., & Beisner, B. E. (2016). Functional Traits. In eLS (pp. 1–8). American Cancer Society. https://doi.org/10.1002/9780470015902.a0026282
    O’Leary, M. H. (1988). Carbon isotopes in photosynthesis: fractionation techniques may reveal new aspects of carbon dynamics in plants. BioScience, 38(5), 328–336. https://doi.org/10.2307/1310735
    Ouimette, A., Guo, D., Hobbie, E., & Gu, J. (2013). Insights into root growth, function, and mycorrhizal abundance from chemical and isotopic data across root orders. Plant and Soil, 367(1), 313–326. https://doi.org/10.1007/s11104-012-1464-4
    Pan, Y., Cieraad, E., Armstrong, J., Armstrong, W., Clarkson, B. R., Colmer, T. D., Pedersen, O., Visser, E. J. W., Voesenek, L. A. C. J., & van Bodegom, P. M. (2020). Global patterns of the leaf economics spectrum in wetlands. Nature Communications, 11(1), 4519. https://doi.org/10.1038/s41467-020-18354-3
    Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: Coping with too much variation. PLOS ONE, 5(3), e9672. https://doi.org/10.1371/journal.pone.0009672
    Peeters, P. J. (2002). Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biological Journal of the Linnean Society, 77(1), 43–65. https://doi.org/10.1046/j.1095-8312.2002.00091.x
    Pessarakli, M. (1996). Handbook of Photosynthesis, Second Edition. CRC Press.
    Phillips, D. L., Newsome, S. D., & Gregg, J. W. (2005). Combining sources in stable isotope mixing models: Alternative methods. Oecologia, 144(4), 520–527. https://doi.org/10.1007/s00442-004-1816-8
    Reich, P. B. (2014). The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-2745.12211
    Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S., & Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440(7086), Article 7086. https://doi.org/10.1038/nature04486
    Reiffarth, D. G., Petticrew, E. L., Owens, P. N., & Lobb, D. A. (2016). Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review. Science of The Total Environment, 565, 8–27. https://doi.org/10.1016/j.scitotenv.2016.04.137
    Riis, T., Dodds, W. K., Kristensen, P. B., & Baisner, A. J. (2012). Nitrogen cycling and dynamics in a macrophyte-rich stream as determined by a release. Freshwater Biology, 57(8), 1579–1591. https://doi.org/10.1111/j.1365-2427.2012.02819.x
    Ruiz-Navarro, A., Barberá, G. G., Albaladejo, J., & Querejeta, J. I. (2016). Plant δ15N reflects the high landscape-scale heterogeneity of soil fertility and vegetation productivity in a Mediterranean semiarid ecosystem. New Phytologist, 212(4), 1030–1043. https://doi.org/10.1111/nph.14091
    Sánchez-Carrillo, S., & Álvarez-Cobelas, M. (2018). Stable isotopes as tracers in aquatic ecosystems. Environmental Reviews, 26(1), 69–81. https://doi.org/10.1139/er-2017-0040
    Schellberg, J., & Pontes, L. da S. (2012). Plant functional traits and nutrient gradients on grassland. Grass and Forage Science, 67(3), 305–319. https://doi.org/10.1111/j.1365-2494.2012.00867.x
    Seibt, U., Rajabi, A., Griffiths, H., & Berry, J. A. (2008). Carbon isotopes and water use efficiency: Sense and sensitivity. Oecologia, 155(3), 441–454. https://doi.org/10.1007/s00442-007-0932-7
    Song, W., Tong, X., Liu, Y., & Li, W. (2020). Microbial community, newly sequestered soil organic carbon, and δ15N variations driven by tree roots. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00314
    Staddon, P. L. (2004). Carbon isotopes in functional soil ecology. Trends in Ecology & Evolution, 19(3), 148–154. https://doi.org/10.1016/j.tree.2003.12.003
    Stotz, G. C., Salgado-Luarte, C., Escobedo, V. M., Valladares, F., & Gianoli, E. (2022). Phenotypic plasticity and the leaf economics spectrum: Plasticity is positively associated with specific leaf area. Oikos, 2022(11), e09342. https://doi.org/10.1111/oik.09342
    Udy, J. W., & Bunn, S. E. (2001). Elevated δ15N values in aquatic plants from cleared catchments: why? Marine and Freshwater Research, 52(3), 347–351. https://doi.org/10.1071/mf00002
    Unkovich, M. (2013). Isotope discrimination provides new insight into biological nitrogen fixation. New Phytologist, 198(3), 643–646. https://doi.org/10.1111/nph.12227
    Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5), 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
    Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
    Vivian-Smith, G. (1997). Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology, 85(1), 71–82. https://doi.org/10.2307/2960628
    Wang, Y., Liu, F., Andersen, M. N., & Jensen, C. R. (2010). Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation. Functional Plant Biology, 37(2), 175–182. https://doi.org/10.1071/FP09181
    Wang, Z., Liu, J., Wang, Y., Agathokleous, E., Hamoud, Y. A., Qiu, R., Hong, C., Tian, M., Shaghaleh, H., & Guo, X. (2022). Relationships between stable isotope natural abundances (δ13C and δ15N) and water use efficiency in rice under alternate wetting and drying irrigation in soils with high clay contents. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1077152
    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology, Evolution, and Systematics, 33(Volume 33, 2002), 125–159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
    Yin, C., Yang, H., Wang, J., Guo, J., Tang, X., & Chen, J. (2020). Combined use of stable nitrogen and oxygen isotopes to constrain the nitrate sources in a karst lake. Agriculture, Ecosystems & Environment, 303, 107089. https://doi.org/10.1016/j.agee.2020.107089
    Zhang, X., Ward, B. B., & Sigman, D. M. (2020). Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews, 120(12), 5308–5351. https://doi.org/10.1021/acs.chemrev.9b00613

    下載圖示
    QR CODE