簡易檢索 / 詳目顯示

研究生: 朱卉安
JHU, Huei-An
論文名稱: 不同年齡層孕產婦家庭社經背景、各式昇醣指標與妊娠結果之影響分析
Examination of different maternal age on pregnancy and relationship between family socioeconomic status and glycemic indicators with pregnancy outcomes
指導教授: 盧立卿
Lyu, Li-Ching
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 163
中文關鍵詞: 孕婦年齡家庭社經背景昇醣指標孕期體重增加量新生兒體型
英文關鍵詞: maternal age, family socioeconomic status, glycemic indicators, gestational weight gain, birth outcomes
DOI URL: https://doi.org/10.6345/NTNU202204524
論文種類: 學術論文
相關次數: 點閱:337下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由不同年齡層與不同家庭社經背景分組,探討孕期昇醣指標與妊娠結果之關聯。合併兩世代資料,民93世代於台北市立聯合醫院婦幼院區與台大醫院進行招募,民98世代分別招募台灣北、中、南三個地區的醫院。研究工具分為基本資料問卷及飲食問卷。飲食問卷包括24小時飲食回憶(24-hour dietary recalls, 24HDR)和飲食頻率問卷(food frequency questionnaire, FFQ)。

    本研究共分析336位母親及其新生兒。母親平均年齡為31歲、家庭社經分數4.8分(為中高社經)、家庭總月收入六~八萬。無論是將母親年齡分組(≦25歲、26-30歲、31-35歲、≧36歲)或是依不同家庭社經分組(低、中、中高、高社經),年齡低的孕婦,家庭社經、總月收入較低。昇醣指標包括:飲食昇醣指數(dietary glycemic index,D_ GI)、昇醣負荷(glycemic load, GL)、相對血糖效應(relative glycemic effect, GL2)。使用24小時飲食回憶(24-hour dietary recall, 24HDR)、飲食頻率問卷(food frequency questionnaire, FFQ)、以熱量校正飲食頻率問卷(calibrated FFQ, cFFQ),共三種不同的方法評估孕期昇醣指標。研究發現,年齡分組對於昇醣指標攝取狀況差異不大;以家庭社經分組,低社經組GL及GL2皆最高,隨著社經地位提高而呈線性下降。其中使用FFQ評估,在低社經組與高社經組達顯著差異(p<0.01) 。此外三種方法評估D_GI值在低社經組皆最低。以食物來源來探討,醣類、GL及GL2相似,主要食物供應來源為澱粉類主食、新鮮水果類、調味糖類、烘焙點心。D_GI則因不同評估方式而有差異,以24HDR評估D_GI結果與醣類、GL、GL2相似,而以FFQ評估D_GI則主要來源為肉類(及肉類混炒青菜)、澱粉類主食、海鮮(及海鮮混炒青菜)。

    妊娠結果包括孕期體重增加量及新生兒體型。不同家庭社經背景、年齡層分組對於婦女孕前、孕期體重及孕期體重增加量皆無達到顯著差異。以整體來看,婦女孕期GL、GL2攝取越高,孕期體重增加量越多。並且GL及GL2其解釋力佔孕期體重增加量1.5~3%。新生兒體型的部分,不同家庭社經、總月收入與新生兒出生體型無顯著相關。以孕婦年齡來探討,孕婦年齡與新生兒體型呈正相關。其中年齡與新生兒的頭圍、胸圍達到顯著正相關 (p<0.01)。昇醣指標對於新生兒體型的影響,其中與新生兒出生身長較具相關,並且GL及GL2與新生兒出生身長呈負相關。其解釋力佔新生兒出生身長1%。

    不同家庭社經背景,雖然對於營養素的攝取差異較大,家庭社經越高,孕婦年齡較高,攝取昇醣指標值越低,但較不影響新生兒體型。不同年齡層分組雖然在營養素攝取差異較小,但與新生兒體型較有相關。孕婦年齡與新生兒體型呈正相關。以整體來看,GL及GL2值攝取越高,母親孕期體重增加量越多。此外昇醣指標對於新生兒體型的影響,新生兒出生身長與GL及GL2呈負相關。因此在碳水化合物的選擇應選高纖適度的碳水化合物,維持適量的GL及GL2。

    In this study, the pregnant women weredivided into several subgroups by different ages and different family socioeconomic status (SES). The purpose of this study was to discuss the glycemic indicators during pregnancy and the pregnancy outcomes associated with age and SES. The data from two cohort studies were combined. The subjects for the first cohort were recruited from the Taipei Municipal Women’s and Children’s Hospital and National Taiwan University Hospital in 2004. The subjects for the second cohort were recuited, from the north, central and southern regions of the three hospitals in 2009. The methodology adopted the questions asked in basic information questionnaires and diet questionnaire. Diet questionnaires included the 24-hour dietary recall (24HDR) and the food frequency questionnaire (FFQ).

    We analyzed data from 336 mothers and their newborns. Maternal average age was 31 years old, with the average family socioeconomic score of 4.8 (5 being high-intermediate socioeconomic) and the total household monthly income of NT$60,000-80,000. These data were classified into two major categories for subgroup analyses: the maternal age subgroups (≦25 years, 26-30 years, 31-35 years, ≧36 years old) and the family socioeconomic status subgroups: (low, medium, high-intermediate, high socioeconomic). The results indicated that thefamily socioeconomic status and total monthly incomeis for younger pregnant women were lower than the older pregnant women. The glycemic indicators including dietary glycemic index (D_GI), glycemic load (GL) and the relative glycemic effect (GL2) were calucated from the24-hour dietary recall (24HDR), the food-frequency questionnaire (FFQ) and thecalibrated food frequency questionnaire (cFFQ) to assess the pregnancy glycemic indicators. The results showed that there was no difference in glycemic indicators of the maternal age subgroups, while the data of family socioeconomic status subgroups indicated that low family socioeconomic status with the highest GL and GL2. In conclusion, the socioeconomic status is inversely associatedwith the GL and GL2, the data from the FFQ in the low socioeconomic subgroup and high socioeconomic group were significantly differencent (p<0.01).All the D_GI values in low family socioeconomic status subgroup were low by the three dietary methods.Our data showed that the food groups including starchy staples, fresh fruits, refined sugar, and baked snack were similar to provide carbohydrate, GL and GL2. We also found that different results for D_GI by using two kinds of assessment methods. The food groups providing D_GI are as similar as ones providing carbohydrate, GL, and GL2 by using 24HDR; while meat (meat and vegetable mixed, fried), starchy staples, seafood (seafood and vegetable mixed, fried) were the main food groups proving D_GI with FFQ method.

    The gestational weight gainduring pregnancy and birth outcomes (birth weight, length, head and chest circumference)were also reported. There was no manifest difference between pre-pregnancy weight and gestational weight gain classified into different subgroups of family socioeconomic status or the maternal age. Overall, the pregnant women had higher average GL and GL2 with more gestational weight gain. GL and GL2 during pregnancy explain 1.5~3 % of variances for gestational weight gain. In terms ofbirth outcomes, thefamily socioeconomic subgroups or the total monthly income had no correlation with the birth outcomes. In terms of maternal age subgroups, there were positive correlations between maternal age and birth outcomes.With regards to the impact of the glycemic indicators on birth ourcomes, birth length was negatively correlated with GL and GL2. GL and GL2 during pregnancy explain 1 % of variances for birth length.

    The results showed that family socioeconomic status was positively correlated with maternal age, but negatively correlated with glycemic indicators. There were no significant differences between birth outcomes in different family socioeconomic status. The nutrient intakes of different maternal age of pregnant women classified into the four subgroups were not significantly different, but there were related to the birth outcomes. Maternal age was positively correlated with the birth outcomes. Overall, the higher GL and GL2 pregnant women with more gestational weight gain. In terms of birth outcomes, birth length was negatively correlated with GL and GL2. Therefore, this study recommended pregnant women to choice high-fiber and moderate carbohydrate consumption to maintain the appropriate dietary GL and GL2 values.

    第一章 緒論 第一節 研究動機 1 第二節 研究目的與問題 3 第三節 名詞解釋 4 第二章 文獻探討 第一節 婦女年齡、家庭社經背景相關議題 5 第二節 懷孕期間昇醣指標之相關 9 第三節 新生兒出生體型相關因素 12 第三章 研究方法 第一節 研究架構與研究設計實施程序 20 第二節 研究對象及研究工具 24 第三節 資料收集及訪員訓練 27 第四節 資料處理與統計分析 28 第四章 研究結果 第一節 基本資料分析 34 第二節 婦女孕期營養素攝取狀況 41 第三節 孕期昇醣指標與體重變化 58 第四節 新生兒體型之探討 78 第五章 討論 101 第六章 結論 115 第七章 研究限制與建議 118 參考文獻 ㄧ、中文部分 121 二、英文部分 122 表目錄 表3-2.1 民93新生兒招募標準 24 表3-4.1 營養素完成率百分比 31 表4-1.1 比較不同地區婦女基本資料 35 表4-1.2 基本資料次數表 36 表4-1.3 婦女身體測量資料 37 表4-1.4 孕期體重增加量分佈 37 表4-1.5 不同家庭社經分組孕婦之基本資料 38 表4-1.6 不同年齡層孕婦與教育程度、家庭社經、總月收入之分析 40 表4-2.1 不同方法評估孕期營養素攝取狀況 42 表4-2.2 使用配對t檢定比較24HDR和FFQ評估方法之差異 43 表4-2.3 使用配對t檢定比較24HDR和cFFQ評估方法之差異 43 表4-2.4 不同年齡層分組,營養素攝取狀況 46 表4-2.5 不同家庭社經背景,孕期營養素攝取狀況 50 表4-2.6 以24HDR評估不同社經背景孕婦攝取食物種類及熱量 54 表4-2.7 以FFQ評估不同社經背景孕婦攝取食物種類及熱量 55 表4-2.8 孕婦攝取食物類別之醣類及昇醣指標供應排序(24HDR) 56 表4-2.9 孕婦攝取食物類別之醣類及昇醣指標供應排序(FFQ) 56 表4-3.1 三種評估方法評估孕期昇醣指標 58 表4-3.2 昇醣指數與營養素之相關 60 表4-3.3 昇醣指標與孕婦基本資料 62 表4-3.4 昇醣指標與體重變化 63 表4-3.5 分析昇醣指標與孕期體重增加量 64 表4-3.6 孕婦基本資料與孕期體重變化之相關 65 表4-3.7 不同家庭社經分組與孕期體重增加量 65 表4-3.8 不同年齡層分組與孕期體重增加量 66 表4-3.9 使用24HDR與影響孕期體重增加量之多元迴歸模式 69 表4-3.10 使用FFQ與影響孕期體重增加量之多元迴歸模式 72 表4-3.11 使用cFFQ與影響孕期體重增加量之多元迴歸模式 75 表4-4.1 嬰兒基本資料測量 78 表4-4.2 新生兒性別對於新生兒體型及婦女基本資料 79 表4-4.3 孕婦基本資料與新生兒體型 80 表4-4.4 不同家庭社經分組與新生兒體型之分析 81 表4-4.5 孕婦年齡與新生兒體型之分析 82 表4-4.6 孕期體重增加量與新生兒體型之分析 83 表4-4.7 使用不同評估方法分析孕婦營養素攝取與新生兒出生體重之相關 86 表4-4.8 使用不同評估方法分析孕婦營養素攝取與新生兒出生身長之相關 87 表4-4.9 使用不同評估方法分析孕婦營養素攝取與新生兒出生頭圍之相關 88 表4-4.10 使用不同評估方法分析孕婦營養素攝取與新生兒出生胸圍之相關 89 表4-4.11 使用24HDR與新生兒出生身長之多元迴歸模式 92 表4-4.12 使用FFQ與新生兒出生身長之多元迴歸模式 95 表4-4.13 使用cFFQ與新生兒出生身長之多元迴歸模式 98 表5-1.1 家庭社經背景與營養攝取狀況 105 表5-1.2 各國孕婦營養素及昇醣指標攝取狀況 109 圖目錄 圖3-1.1 研究架構 20 圖3-1.2 實施程序 23 圖5-1.1 不同評估方法之主要食物來源 107 附錄表 附錄一 婦女孕期昇醣指標之分布圖 131 附錄二 民93世代研究調查同意書 132 附錄三 民93世代產婦基本資料 133 附錄四 民93世代懷孕全期產婦問卷B 134 附錄五 民98世代孕婦基本資料 144 附錄六 民98世代孕婦24小時飲食回憶及活動量問卷 147 附錄七 民98世代懷孕期飲食頻率問卷(B問卷) 149 附錄八 民93孕婦飲食頻率母問卷 155 附錄九 民98孕婦飲食頻率母問卷 160

    一、中文部分

    行政院衛生署國民健康局(2005)。孕婦健康手冊。
    李宛蓉(2008)。探討懷孕、昇糖指數和相關營養素與嬰兒出生體型及婦女體重變化之關係。國立台灣師範大學人類發展與家庭學系碩士論文,未出版,台北市。
    李慶姝和漆洪波(2006)。探討新生兒體重與孕婦年齡和BMI的關係。重慶醫科大學學報,37(1),51 - 52。
    李燕鳴、傅振宗(2001)。產婦年齡與不良懷孕結果的探討-花蓮縣三年生產紀錄分析。慈濟醫學,13(2),95-103。
    林金蓮(1992)。妊娠醫學小百科。香港:青春(春華發行)。
    屈紫綺(2015)。臺灣北中南地區婦女懷孕期間之飲食差異及植化素攝取情形。國立台灣師範大學人類發展與家庭學系碩士論文,未出版,台北市。
    周美儀(2007)。產婦年齡與新生兒早產及低體重之相關性探討。臺北醫學大學醫務管理學研究所碩士論文,未出版,台北市。
    张江容、雷方慧、韩全容(2006)。不同年龄妊娠妇女体重变化的临床观察。現代護理,13(35),3465 - 3467。
    許祐寧(2005)。婦女懷孕三期飲食狀況、膳食評估法與影響新生兒體型之前瞻性研究分析。國立台灣師範大學人類發展與家庭學系碩士論文,未出版,台北市。
    黃鉅凱(2008)。以飲食頻率問卷評估婦女飲食型態、昇糖指數及昇糖負荷對懷孕結果之研究。國立台灣師範大學人類發展與家庭學系碩士論文,未出版,台北市。
    衛生福利部國民健康署(2014)。孕婦健康手冊。
    賴又禎(2013)。探討家庭社經背景對零至兩歲嬰幼兒飲食及生長發育追蹤世代之影響。國立台灣師範大學人類發展與家庭學系碩士論文,未出版,台北市。
    陳麗美(1990)。新店市孕產婦懷孕結果─早產及出生之危險因素調查研究。公共衛生,17(2),195-207。

    二、英文部分

    Ahmed Ebbiary, N. A., Lenton, E. A., & Cooke, I. D. (1994). Hypothalamic-pituitary ageing: progressive increase in FSH and LH concentrations throughout the reproductive life in regularly menstruating women. Clin Endocrinol (Oxf), 41(2), 199-206.
    Alshami, H. A., Kadasne, A. R., Khalfan, M., Iqbal, S. Z., & Mirghani, H. M. (2011). Pregnancy outcome in late maternal age in a high-income developing country. Arch Gynecol Obstet, 284(5), 1113-1116. doi:10.1007/s00404-010-1821-6
    Bermudez, O. I., & Tucker, K. L. (2003). Trends in dietary patterns of Latin American populations. Cad Saude Publica, 19 Suppl 1, S87-99.
    Brouns, F., Bjorck, I., Frayn, K. N., Gibbs, A. L., Lang, V., Slama, G., & Wolever, T. M. (2005). Glycaemic index methodology. Nutr Res Rev, 18(1), 145-171. doi:10.1079/nrr2005100
    Brown, J. E., Murtaugh, M. A., Jacobs, D. R., Jr., & Margellos, H. C. (2002). Variation in newborn size according to pregnancy weight change by trimester. Am J Clin Nutr, 76(1), 205-209.
    Chung, J. G., Taylor, R. S., Thompson, J. M., Anderson, N. H., Dekker, G. A., Kenny, L. C., Consortium, S. (2013). Gestational weight gain and adverse pregnancy outcomes in a nulliparous cohort. Eur JObstet Gynecol Reprod Biol,167(2), 149-153. doi:10.1016/j.ejogrb.2012.11.020
    Church, S. M. (2007). Diet and nutrition in low-income households – key findings of a national survey. Nutrition Bulletin, 32(3), 287-294. doi:10.1111/j.1467-3010.2007.00644.x
    Clapp, J. F., 3rd. (1998). Effect of dietary carbohydrate on the glucose and insulin response to mixed caloric intake and exercise in both nonpregnant and pregnant women. Diabetes Care, 21 Suppl 2, 107-112.
    Crozier, S. R., Robinson, S. M., Godfrey, K. M., Cooper, C., & Inskip, H. M. (2009). Women's dietary patterns change little from before to during pregnancy. J Nutr,139(10), 1956-1963. doi:10.3945/jn.109.109579
    Darmon, N., & Drewnowski, A. (2008). Does social class predict diet quality? Am J Clin Nutr, 87(5), 1107-1117.
    Deierlein, A. L., Siega-Riz, A. M., & Herring, A. (2008). Dietary energy density but not glycemic load is associated with gestational weight gain. Am J Clin Nutr, 88(3), 693-699.
    Durie, D. E., Thornburg, L. L., & Glantz, J. C. (2011). Effect of second-trimester and third-trimester rate of gestational weight gain on maternal and neonatal outcomes. Obstet Gynecol, 118(3), 569-575. doi:10.1097/AOG.0b013e3182289f42
    Estrich, D., Ravnik, A., Schlierf, G., Fukayama, G., & Kinsell, L. (1967). Effects of Co-ingestion of fat and protein upon carbohydrate-induced hyperglycemia. Diabetes, 16(4), 232-237.
    Faddy, M. J., Gosden, R. G., Gougeon, A., Richardson, S. J., & Nelson, J. F. (1992). Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod, 7(10), 1342-1346.
    Frost, G., Leeds, A. A., Dore, C. J., Madeiros, S., Brading, S., & Dornhorst, A. (1999). Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet, 353(9158), 1045-1048.
    Goldenberg, R. L., & Culhane, J. F. (2007). Low birth weight in the United States. Am J Clin Nutr, 85(2), 584s-590s.
    Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev, 17(2), 121-155. doi:10.1210/edrv-17-2-121
    Grant, S. M., Wolever, T. M., O'Connor, D. L., Nisenbaum, R., & Josse, R. G. (2011). Effect of a low glycaemic index diet on blood glucose in women with gestational hyperglycaemia. Diabetes Res Clin Pract, 91(1), 15-22. doi:10.1016/j.diabres.2010.09.002
    Hsieh TT, Hsu JJ, Chen CJ, Chiu TH, Liou JD, Hsieh CC, Lo LM, Kuo DM, Soong YK. (1991). Analysis of birth weight and gestational age in Taiwan. J Formos Med Assoc, 90(4), 382-387.
    Jenkins, D. J., Wolever, T. M., Taylor, R. H., Barker, H., Fielden, H., Baldwin, J. M., . . . Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr, 34(3), 362-366.
    Kabagambe, E. K., Baylin, A., Siles, X., & Campos, H. (2002). Comparison of dietary intakes of micro- and macronutrients in rural, suburban and urban populations in Costa Rica. Public Health Nutr, 5(6a), 835-842. doi:10.1079/phn2002372
    Kalhan, S. C., Gilfillan, C. A., Tserng, K. Y., & Savin, S. M. (1988). Glucose-alanine relationship in normal human pregnancy. Metabolism, 37(2), 152-158.
    Kalkhoff, R. K., Kissebah, A. H., & Kim, H. J. (1978). Carbohydrate and lipid metabolism during normal pregnancy: relationship to gestational hormone action. Semin Perinatol, 2(4), 291-307.
    Klein, N. A., Illingworth, P. J., Groome, N. P., McNeilly, A. S., Battaglia, D. E., & Soules, M. R. (1996). Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab, 81(7), 2742-2745. doi:10.1210/jcem.81.7.8675606
    Knudsen, V. K., Orozova-Bekkevold, I. M., Mikkelsen, T. B., Wolff, S., & Olsen, S. F. (2008). Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr, 62(4), 463-470. doi:10.1038/sj.ejcn.1602745
    Krarup, T., Pedersen, T., & Faber, M. (1969). Regulation of oocyte growth in the mouse ovary. Nature, 224(5215), 187-188.
    Lambalk, C. B., De Koning, C. H., & Braat, D. D. (1998). The endocrinology of dizygotic twinning in the human. Mol Cell Endocrinol, 145(1-2), 97-102.
    Lau, C., Toft, U., Tetens, I., Richelsen, B., Jorgensen, T., Borch-Johnsen, K., & Glumer, C. (2006). Association between dietary glycemic index, glycemic load, and body mass index in the Inter99 study: is underreporting a problem? Am J Clin Nutr, 84(3), 641-645.
    Ma, Y., Olendzki, B., Chiriboga, D., Hebert, J. R., Li, Y., Li, W., . . . Ockene, I. S. (2005). Association between dietary carbohydrates and body weight. Am J Epidemiol, 161(4), 359-367. doi:10.1093/aje/kwi051
    Markovic TP, Muirhead R, Overs S, Ross GP, Louie JC, Kizirian N, Denyer G, Petocz P, Hyett J, Brand-Miller J2. (2016). Randomized Controlled Trial Investigating the Effects of a Low-Glycemic Index Diet on Pregnancy Outcomes in Women at High Risk of Gestational Diabetes Mellitus: The GI Baby 3 Study. Diabetes Care, 39(1), 31-38.
    Mayen, A. L., Bovet, P., Marti-Soler, H., Viswanathan, B., Gedeon, J., Paccaud, F., Stringhini, S. (2016). Socioeconomic Differences in Dietary Patterns in an East African Country: Evidence from the Republic of Seychelles. PLoS One, 11(5), e0155617. doi:10.1371/journal.pone.0155617
    Mayen, A. L., Marques-Vidal, P., Paccaud, F., Bovet, P., & Stringhini, S. (2014). Socioeconomic determinants of dietary patterns in low- and middle-income countries: a systematic review. Am J Clin Nutr, 100(6), 1520-1531. doi:10.3945/ajcn.114.089029
    McCartney, D. M., Younger, K. M., Walsh, J., O'Neill, M., Sheridan, C., & Kearney, J. M. (2013). Socio-economic differences in food group and nutrient intakes among young women in Ireland. Br J Nutr, 110(11), 2084-2097. doi:10.1017/s0007114513001463
    Mishra, G., Ball, K., Arbuckle, J., & Crawford, D. (2002). Dietary patterns of Australian adults and their association with socioeconomic status: results from the 1995 National Nutrition Survey. Eur J Clin Nutr, 56(7), 687-693. doi:10.1038/sj.ejcn.1601391
    Monro, J. A., & Shaw, M. (2008). Glycemic impact, glycemic glucose equivalents, glycemic index, and glycemic load: definitions, distinctions, and implications. Am J Clin Nutr, 87(1), 237s-243s.
    Morrison, J., Najman, J. M., Williams, G. M., Keeping, J. D., & Andersen, M. J. (1989). Socio-economic status and pregnancy outcome. An Australian study. Br J Obstet Gynaecol, 96(3), 298-307.
    Moses, R. G., Luebcke, M., Davis, W. S., Coleman, K. J., Tapsell, L. C., Petocz, P., & Brand-Miller, J. C. (2006). Effect of a low-glycemic-index diet during pregnancy on obstetric outcomes. Am J Clin Nutr, 84(4), 807-812.
    Murakami, K., Sasaki, S., Takahashi, Y., Okubo, H., Hosoi, Y., Horiguchi, H., . . . Kayama, F. (2006). Dietary glycemic index and load in relation to metabolic risk factors in Japanese female farmers with traditional dietary habits. Am J Clin Nutr, 83(5), 1161-1169.
    Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A., & Dunger, D. B. (2000). Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. Bmj, 320(7240), 967-971.
    Rasmussen, K. M., Abrams, B., Bodnar, L. M., Butte, N. F., Catalano, P. M., & Maria Siega-Riz, A. (2010). Recommendations for weight gain during pregnancy in the context of the obesity epidemic. Obstet Gynecol, 116(5), 1191-1195. doi:10.1097/AOG.0b013e3181f60da7
    Rasmussen, K. M., Catalano, P. M., & Yaktine, A. L. (2009). New guidelines for weight gain during pregnancy: what obstetrician/gynecologists should know. Curr Opin Obstet Gynecol, 21(6), 521-526. doi:10.1097/GCO.0b013e328332d24e
    Reichman, N. E., & Teitler, J. O. (2006). Paternal age as a risk factor for low birthweight. Am J Public Health, 96(5), 862-866. doi:10.2105/ajph.2005.066324
    Rhodes, E. T., Pawlak, D. B., Takoudes, T. C., Ebbeling, C. B., Feldman, H. A., Lovesky, M. M., Ludwig, D. S. (2010). Effects of a low-glycemic load diet in overweight and obese pregnant women: a pilot randomized controlled trial. Am J Clin Nutr, 92(6), 1306-1315. doi:10.3945/ajcn.2010.30130
    Salem Yaniv, S., Levy, A., Wiznitzer, A., Holcberg, G., Mazor, M., & Sheiner, E. (2011). A significant linear association exists between advanced maternal age and adverse perinatal outcome. Arch Gynecol Obstet, 283(4), 755-759. doi:10.1007/s00404-010-1459-4
    Salmeron, J., Manson, J. E., Stampfer, M. J., Colditz, G. A., Wing, A. L., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Jama, 277(6), 472-477.
    Scholl, T. O., Chen, X., Khoo, C. S., & Lenders, C. (2004). The dietary glycemic index during pregnancy: influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am J Epidemiol, 159(5), 467-474.
    Schulz, M., Liese, A. D., Mayer-Davis, E. J., D'Agostino, R. B., Jr., Fang, F., Sparks, K. C., & Wolever, T. M. (2005). Nutritional correlates of dietary glycaemic index: new aspects from a population perspective. Br J Nutr, 94(3), 397-406.
    Smith, A. M., & Baghurst, K. I. (1992). Public health implications of dietary differences between social status and occupational category groups. J Epidemiol Community Health, 46(4), 409-416.
    Sodjinou, R., Agueh, V., Fayomi, B., & Delisle, H. (2009). Dietary patterns of urban adults in Benin: relationship with overall diet quality and socio-demographic characteristics. Eur J Clin Nutr, 63(2), 222-228. doi:10.1038/sj.ejcn.1602906
    Treloar, A. E., Boynton, R. E., Behn, B. G., & Brown, B. W. (1967). Variation of the human menstrual cycle through reproductive life. Int J Fertil, 12(1 Pt 2), 77-126.
    Tuntiseranee, P., Olsen, J., Chongsuvivatwong, V., & Limbutara, S. (1999). Socioeconomic and work related determinants of pregnancy outcome in southern Thailand. J Epidemiol Community Health, 53(10), 624-629.
    Walsh, J. M., & McAuliffe, F. M. (2012). Prediction and prevention of the macrosomic fetus. Eur J Obstet Gynecol Reprod Biol, 162(2), 125-130. doi:10.1016/j.ejogrb.2012.03.005
    Walsh, J. M., McGowan, C. A., Mahony, R., Foley, M. E., & McAuliffe, F. M. (2012). Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. Bmj, 345, e5605. doi:10.1136/bmj.e5605
    Westendorp, R. G. J., & Kirkwood, T. B. L. (1998). Human longevity at the cost of reproductive success. Nature, 396(6713), 743-746.
    Yekta, Z., Ayatollahi, H., Porali, R., & Farzin, A. (2006). The effect of pre-pregnancy body mass index and gestational weight gain on pregnancy outcomes in urban care settings in Urmia-Iran. BMC Pregnancy Childbirth, 6, 15. doi:10.1186/1471-2393-6-15
    Zhu, J. L., Madsen, K. M., Vestergaard, M., Basso, O., & Olsen, J. r. (2005). Paternal Age and Preterm Birth. Epidemiology, 16(2), 259-262. doi:10.1097/01.ede.0000152526.63279.da

    下載圖示
    QR CODE