研究生: |
陳富群 Fu-Chun Chen |
---|---|
論文名稱: |
亞洲沙塵暴對臺灣東北方―黑潮海域生態系有機碳循環之影響 Effect of the Asian dust storms on organic carbon cycle in the Kuroshio Water, northeastern Taiwan |
指導教授: |
陳仲吉
Chen, Chung-Chi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 亞洲沙塵暴 、黑潮 、有機碳循環 、無機營養鹽 、初級生產力 |
英文關鍵詞: | Asian dust storm, Kuroshio Current, organic carbon cycling, inorganic nutrients, primary production |
論文種類: | 學術論文 |
相關次數: | 點閱:312 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為探討亞洲沙塵暴 (Asian dust storm)如何影響黑潮海域有機碳循環的生成與變動,本研究在2006年三月沙塵暴可能侵襲期間,於臺灣東北方黑潮海域定點測站 (123° 10’ °E ; 25° 5’ °N)進行採樣研究。為便於分析比較,在此利用大氣懸浮微粒鋁元素 (Al)濃度做為判定沙塵暴事件之標準,並將其時程定義如下:「沙塵暴前」為沙塵暴侵襲之前三天的時期;「沙塵暴中」為Al濃度 > 3000 ng m-3時;「沙塵暴後」為沙塵暴侵襲之後三天的時期。研究結果顯示,「沙塵暴中」時期水體中的硝酸鹽 (0.16 ± 0.04 μM)、葉綠素甲濃度 (Chl-a;0.50 ± 0.16 mg Chl m-3)、初級生產力 (PP;9.95 ± 4.73 mg C m-3 d-1)、異營性細菌生物量 (BB;5.61 ± 0.56 mg C m-3)、及異營性細菌生產力 (BP;1.01 ± 0.12 mg C m-3 d-1)均較「沙塵暴前」有明顯提升的現象,其中異營性細菌生物量更在「沙塵暴後」時期達至相對高值 (5.93 mg C m-3)。進一步分析顯示黑潮海域植浮群聚可能受到沙塵暴帶來的微量金屬元素的刺激而促進其生長,此推測可由大氣所沉降的溶解性鐵元素濃度 (Fe-soluble)分別與PP (r = 0.94, p < 0.05)及浮游植物置換率 (Pμ) (r = 0.90, p < 0.05)之間有著顯著正相關得到佐證。此外,分析結果也顯示研究期間溶解態有機碳 (DOC)對Chl-a及BB積分平均值之間有一顯著關係式存在:IDOCavg = 1762.4 × IChl-aavg - 487.3 × IBBavg + 3302 (r2 = 0.94, p < 0.01);此關係式建議在浮游植物大量生長的同時,水體中溶解態有機碳的濃度會隨浮游植物量的變化而改變,而此大量供應的基質(例如:溶解態有機碳)則會受到異營性細菌的利用。而初級生產力 (PP)與群聚呼吸率 (CR)之比值 (P/R ratio)為0.45 ± 0.40,據此研判研究期間,本海域是屬於異營性生態系,但值得注意的是「沙塵暴中」時期表層水體 (25 m以淺)的P/R ratio約為2左右,顯示此時水體中自營作用旺盛,浮游植物行光合作用所生合成的有機碳量足夠提供整體浮游生物群聚消耗,並可能有多餘的有機碳輸出。
The purpose of this study is to investigate how the Asian dust storm (AD) affects organic carbon cycling in the Kuroshio Water. Samples were collected from a station (123° 10’ °E ; 25° 5’ °N) located in the Kuroshio, northeastern of Taiwan during the AD season in March, 2006. To compare, the AD event is defined as aerosol [Al] >3000 ng m-3, and the pre-AD and the after-AD periods refer to 3 days prior to and after the AD event, respectively. Results showed that the biogeochemical parameters, including nitrate (NO3- ; 0.16 ± 0.04 μM), chlorophyll a (Chl-a; 0.50 ± 0.16 mg Chl m-3), primary production (PP;9.95 ± 4.73 mg C m-3 d-1), biomass (BB; 5.61 ± 0.56 mg C m-3) and production (BP; 1.01 ± 0.12 mg C m-3 d-1) of heterotrophic bacteria increased significantly in the AD period compared to the pre-AD period. Even more, the BB reached maximum (5.93 mg C m-3) in the after-AD period. Further analyses suggest that growth of phytoplankton has been stimulated by iron elements from aerosol deposited during the AD period. This assumption can be supported by the significant relationships observed between PP and water-soluble iron concentration (r = 0.94, p < 0.05) and between phytoplankton turnover rate (Pμ) and Fe-soluble (r = 0.90, p < 0.05). In addition, a significant relationship was evident among the average values of dissolved organic carbon (DOC), Chl-a, and BB, and it can be expressed as following, IDOCavg = 1762.4 × IChl-aavg - 487.3 × IBBavg + 3302 (r2 = 0.94, p < 0.01). This result suggests that DOC concentration increased with growth of phytoplankton. In turn, the abundant DOC served as substrate for heterotrophic bacteria. As the P/R ratio, the mean ± SD value was 0.45 ± 0.40, and it suggests that the Kuroshio Water ecosystem was heterotrophic. Notably, the P/R ratio was larger than 2 in the surface water (< 25 m) during the AD period. It indicates that organic carbon produced by robust growth of phytoplankton in the surface water was more than sufficient for the consumption of plankton communities, and it can be expected that there was residual organic carbon exported into other systems.
Alpine A. E., Cloern J. E. (1988) Phytoplankton growth rates in a light-limited environment, San Francisco Bay. Marine Ecology Progress Series, 44:167-173.
Baker A. R., Kelly S. D., Biswas K. F., Watt M., Jickells T. D. (2003) Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters, 30(24):2296, doi:10.1029 /2003GL018518.
Bishop J. K. B., Davis R. E., Sherman J. T. (2002) Robotic observation of dust storm enhancement of carbon biomass in the North Pacific. Science 298:817-820.
Bonnet S., Guieu C., Chiaverini J., Ras J., Stock A. (2005) Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system. Limnology and Oceanography, 50:1810-1819.
Carlson C. A., Bate N. R., Hansell D. A., Ducklow H. W. (1999) Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquatic Microbial Ecology, 19:119-128.
Capone D. G., Zehr J. P., Paerl H. W., Bergman B., Carpenter E. J. (1997) Trichodesmium, a globally significant marine cyanobacterium. Science, 276:1221-1229.
Cole J. J., Findlay S., Pace M. L. (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series, 43:1-10.
Cho B. C., Azam F. (1998) Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature, 332:441-443.
Chen C. C., Shiah F. K., Gong G. C., Chiang K. P. (2003) Planktonic community respiration in the East China Sea: importance of microbial consumption of organic carbon. Deep-Sea Research II, 50:1311-1325.
Chen C. C., Chiang K. P., Gong G. C., Shiah F. K., Tseng C. M., Liu K. K. (2006) Importance of planktonic community respiration on the carbon balance of the East China Sea in summer. Global Biogeochemical Cycles, GB4001, doi:10.1029/2005GB002647.
Chen C. C., Shiah F. K., Chiang K. P., Gong G. C., Kemp W. M. (2009) Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea. Journal of Geophysical Research-Oceans, 114:C03005, doi:10.1029/2008JC004891.
Chen H. Y., Chen L. D. (2008) Importance of anthropogenic inputs and continental-derived dust for the distribution and flux of water-soluble nitrogen and phosphorus species in aerosol within the atmosphere over the East China Sea. Journal of Geophysical Research, 113:D11303, doi:10.1029/2007JD009491.
Chen M. P., Lo S. C., Lin K. L. (1992) Composition and texture of surface sediment indicating the depositional environments off northeast Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 3(3):395-418.
del Giorgio P. A., Cole J. J., Cimbleris A. (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 85:148-151.
Denman K. L., Platt T. (1975) Coherences in the horizontal distributions of phytoplankton and temperature in the upper ocean. Mémories de la Société Royale des Sciences de Liège Serie 6, 7:19-30.
Diehl S. (2002) Phytoplankton, light, and nutrient in a gradient of mixing depths: theory. Ecology, 83:386-398.
Diehl S., Berger S.A., Ptacnik R., Wild A. (2002) Phytoplankton, light and nutrients in a gradient of mixing depths: field experiments. Ecology, 83:399-411.
Duce R. A. (1986) The impact of atmospheric nitrogen, phosphorus, and iron species on marine biological productively. P. Buat-Menard(ed), The Role of Air-Sea Excahange in Geochemical Cycling, 497-529.
Duce R. A., Tindale N. W. (1991) Atmospheric transport of iron and its deposition in the ocean. Limnology and Oceanography, 36:1715-1726.
Duce R. A., Liss P. S., Merrill J. T., Atlas E. L., Buat-Menard P., Hicks B. B., Miller J. M., Prospero J. M., Arimoto R., Church T. M., Ellis W., Galloway J. N., Hansen L., Jickells T. D., Knap A. H., Reinhardt K. H., Schneider B., Soudine A., Tokos J. J., Tsunogai S., Wollast R., Zhou M. (1991) The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 5:193-259.
Ducklow H. W., Carlson C. A. (1992) Oceanic bacterial production. In: Marshell K. C. (Eds.) Advances in microbial ecology. Plenum Press. New York:113-181.
Duarte C. M., Agusti S. (1998) The CO2 balance of unproductive aquatic ecosystem. Science, 281:234-236.
Duyl F. C. v., Gast G. J., Steinhoff W., Kloff S., Veldhuis M. J. W., Bak R. P. M. (2002) Factors influencing the short-term variation in phytoplankton composition and biomass in coral reef waters. Coral Reefs, 21:293-306.
Eppley R. W., Chavez F. P., Barber R. T. (1992) Standing stocks of particulate carbon and nitrogen in the equatorial Pacific at 150°W. Journal of Geophysical Research, 97 (C1):655-661.
Fuhrman J. A., Azam F. (1980) Bacterioplankton secondary production estimates for coastal waters of British Colunbia, Antarctica, and California. Applied Environmental Microbiology, 39:1085-1095.
Fuhrman J. A., Azam F. (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface water: evaluation and field results. Marine Biology, 66:109-120.
Fung I. Y., Meyn S. K., Tegen I., Doney S. C., John J. G., Bishop J. K. B. (2000) Iron supply and demand in the upper ocean. Global Biogeochemical Cycles, 14:281-295.
Gaarder T., Grann H. H. (1927) Investigations of the production of plankton in the Oslo Fjord. Rapport et Proces-Verbaux des Reunions. Conseil Permanent International pour l’Exploration de la Mer 42:3-31.
González N., Anadón R., Marañón E. (2002) Large-scale variability of planktonic net community metabolism in the Atlantic Ocean: importance of temporal changes in oligotrophic subtropical waters. Marine Ecology Progress Series, 233:21-30.
Gong G. C., Shiah F.K., Liu K. K., Wen Y. H., Liang M. H. (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern East China Sea. Continental Shelf Research, 20:411-436.
Goudie A. S. (2008) Dust storms: Recent developments. Journal of Environmental Management, 90:89-94.
Guieu C., Bozec Y., Blain S., Ridame C., Sarthou G., Leblond N. (2002) Impact of high Saharan dust inputs on dissolved iron concentrations in the Mediterranean Sea. Geophysocal Research Letters, 29(19):article number-1911, doi:10.1029/2001GL014454.
Han Y., Fang X., Zhao T., Kang S. (2008) Long-range trans-Pacific transport and deposition of Asian dust aerosols. Journal of Environmental Sciences, 20:424-428.
Hansell D. A., Carlson C. A. (1998) Deep-Ocean gradients in the concentration of dissolved organic carbon. Nature, 395:263-266.
Hopkinson C. S. (1985) Shallow-water benthic and pelagic metabolism: evidence of heterotrophy in the nearshore Georgia Blight. Marine Biology, 87:19-32.
Hopkinson C. S., Sherr B. F., Wiebe W. J. (1989) Size-fractionated metabolism of coastal microbial plankton. Marine Ecology Progress, 51:155-166.
Hsu S. C., Liu S. C., Huang Y. T., Lung S. C. C., Tsai F., Tu J. Y., Kao S. J. (2008) A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophysical Research, doi:10.1029/2007JD009574.
Hsu S. C., Wong G. T. F., Gong G. C., Shiah F. K., Huang Y. T., Kao S. J., Tsai F. J., Lung S. C. C., Lin F. J., Lin I. I., Hung C. C., Tseng C. M. (2008) Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, doi:10.1016/j.marchem.2008.10.003.
Hung C. C., Gong G. C., Chung W.C., Kuo W. T., Lin F. C. (2008) Enhancement of particulate organic carbon export flux induced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean. Marine Chemistry. In press.
Husar R. B. et al. (2001) The Asian dust events of April 1998. Journal of Geophysical Research, 106:18317-18330.
Kara A. B., Rochford P. A., Hurlburt H. E. (2000) An optimal definition for ocean mixed layer depth . Journal of Geophysical Research, 105:16803-16822.
Kotamarthi V. R., Carmichael G. R. (1993) A modeling study of the long range transport of Kosa using particle trajectory methods. Tellus, 45B:426-441.
Knauer G. A. (1991) Productivity and new production of the oceanic system. In: Wollast R., Mackenzie F. T., Chou L. (Eds.) Interactions of C, N, P and S biogeochemical Cycles and Global Change. Springer-Verlag, New York:211-231.
Lancelot C., Billen G. (1984) Activity of heterotrophic bacteria and its coupling to primary production during the spring phytoplankton bloom in the southern bight of the North Sea. Limnology and Oceanography, 29:721-730.
Mahowald N. M., Baker A. R., Bergametti G., Brooks N., Duce R. A., Jickells T. D., Kubilay N., Prospero J. M., Tegen I. (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19:GB4025, doi:10.1029/2004GB002402.
Mills M. M., Ridame C., Davey M., LaRoche J., Geider R. J. (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic, Nature, 429:292-294.
Legrand M., Desbois M., Vovor K. (1988) Satellite Detection of Saharan Dust: Optimized Imaging during Nighttime. Journal of Climate, 3:256-264.
Mulholland M. R., Capone D. G. (2000) The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp. Trends in Plant Science, 5(4):148-153.
Oka E., Kawabe M. (1998) Characteristics of variations of water properties and density structure around the Kuroshio in the East China Sea. Journal of Oceanography, 54:605-617.
Parson T. R., Miata Y., Lalli M. (1984) Amanual of chemical and biological methods for sea water analysis. Oxford: Pergamon. New York. U. S. A.:101-104.
Peixoto J. P., Oort A. H. (1992) Physics of climate. American institute of physics, New York. U. S. A.:418.
Pulido-Villena E., Wagener T., Guieu C. (2008) Bacterial response to dust pulses in the western Mediterranean: Implications for carbon cycling in the oligotrophic ocean. Global Biogeochemical Cycles, 22:GB1020, doi:10.1029/2007GB003091.
Quigg A., Finkel Z. V., Irwin A. J., Rosenthal Y., Ho T. Y., Reinfelder J. R., Schofield O., Morel F. M. M., Falkowski P. G. (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature, 425:291-294.
Robinson C., Serret P., Tilstone G., Teira E., Zubkov M. V., Rees A. P., Woodward E. M. S. (2002) Plankton respiration in the Eastern Atlantic Ocean. Deep-sea Research 1, 49:787-813.
Shiah F. K., Ducklow H. W. (1994) Temperature and substrate regulation of bacterial abundance production and specific growth rate in Chesapeake Bay, USA. Marine Ecology Progress Series, 103:297-308.
Shiah F. K., Liu K. K., Kao S. J., Gong G. G. (2000) The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall. Continental Shelf Research, 20:459-478.
Siegenthaler U., Sarmiento J. L. (1993) Atmospheric carbon dioxide and the ocean. Nature, 365:119-125.
Smith E. M., Hollibaugh J. T. (1993) Coastal metabolism and the oceanic carbon balance. Review of Geophysics, 31:75-93.
Smith E. M., Kemp W. M. (2001) Size structure and the production / respiration balance in a coastal plankton community. Limnology of Oceanography, 46:473-485.
Strickland J. D. H., Parsons T. R. (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada. Ottawa, Canada:310.
Sumich J. L., Dudley G. H., Sullivan K., Sumich, J. L. (1996) Laboratory & field investigations in marine life. Dubuque, IA:Wm. C. Brown:85.
Sverdrup H. U. (1953) On conditions for the vernal blooming of phytoplankton. Journal du Conseil, 18:287-295.
Tang T. Y., Tang W. T. (1994) Current on the edge of the continental shelf northeast of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 5:335-348.
Toon O. B. (2003) African dust in Florida clouds. Nature 424:623-624.
Webb W. L., Newton M., Starr D. (1974) Carbon dioxide exchange of Alnus urbra: a mathematical model. Oecologia, 17:281-291.
White P. A., Kalff J., Rasmmssen J. B., Gasol J. M. (1991) The effect of temperature and algal biomass on bacterial production and specific growth-rate in fresf water and marine habitats. Microbial Ecology 21:99-118.
Williams P. J. le B., Bowers D. G. (1999) Regional Carbon Imbalances in the Oceans. Science, 284:1735.
Williams P. J. le B., Jenkinson N. W. (1982) A transportable micro-processor controlled precise Winkler titration suitable for field station and shipboard use. Limnology and Oceanography, 27:576-584.
Williams P. J. le B., Purdie D. A. (1991) In vitro and in situ derived rates of gross production, net community production and respiration of oxygen in the oligotrophic subtropical gyre of the North Pacific Ocean. Deep-Sea Research I, 38:891-910.
Williams P. J. le B., Morris P. J., Karl D. M. (2004) Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA. Deep-Sea Research, 51:1563-1578.
Zhang J. (1996) Nutrient elements in large Chinese estuaries. Continental Shelf Research, 16:1023-1045.
白書禎 郭近瑜 鍾仕偉 蘇宗德 (1998) 疊氮修正希巴辣光度測氧法及其在環境監測上的應用。Journal of the Chinese Chemical Society, 56(3):173-185.
苗佑軍 (2007) 南灣珊瑚礁海域浮游生物群聚呼吸率及有機碳循環之研究。國立臺灣師範大學生命科學所碩士論文
劉妍莉 (2005) 東海南部海域浮游生物群聚呼吸率之研究。國立臺灣師範大學生命科學所碩士論文
林依依 (2006) 利用先進遙測技術於沙塵暴--海洋交互作用之研究(1/2)。行政院國家科學委員會專題研究計畫NSC94-2611-M-002-011-
賴昭成 (2004) 亞熱帶沿岸海域細菌呼吸率與群聚呼吸率之季節變化研究。國立臺灣大學海洋研究所碩士論文
柯銘澤 (2001) 臺灣周圍的流場。國立臺灣大學海洋研究所碩士論文
向之郢 (2006) 呂宋海峽兩側有機碳化學之研究。國立中山大學海洋地質及化學研究所碩士論文
張正 廖嘉文 (2004) 東海長期觀測與研究(II) -子計畫二:磷與鐵限制浮游植物生長之研究。
鄭百惠 龔國慶 白書禎 劉康克 (1991) 海水中硝酸根之測定:自動化FIA方法。生地化研究錄第一卷:34-40.
陳泰然 (1989) 天氣學原理。聯經出版社:232-233.
陳昱均 (2005) MODIS在生質燃料監測之應用研究。國立中央大學大氣物理研究所碩士論文
曾忠一 (1988) 大氣輻射。聯經出版社
楊益 (2005) Characteristics of the mixed-layer depth: Observations of the South-East Asia Time-series Study。2005年行政院國家科學委員會海洋學門研討會論文集
文軍 (1995) 乾旱地區沙塵氣溶膠特性及其輻射效應研究。蘭州大學碩士研究生學位論文
王妍方 (2007) 氣膠對東海海域葉綠素與海面溫度之影響。國立臺灣海洋大學海洋環境資訊系碩士論文