研究生: |
陳吉助 Chen, Chi-Chu |
---|---|
論文名稱: |
探討逐步調控氧化石墨烯之含氧官能基於電化學表面電漿子共振技術增強免疫感測晶片靈敏度之應用 Stepwise control of the oxygen-containing functional groups of graphene oxide for enhancing performance in EC-SPR immunosensor applications |
指導教授: |
邱南福
Chiu, Nan-Fu |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 電化學表面電漿子共振技術 、即時調控 、電化學阻抗譜 、生物感測器 |
英文關鍵詞: | Electorchemical Surface Plasmon Resonanc, Real Time Detection, Electrochemistry Impedance Spectroscopy, Electorchemical Biosensor |
DOI URL: | https://doi.org/10.6345/NTNU202204037 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用電化學表面電漿子技術(Electorchemical surface plasmon resonanc, EC-SPR)進行氧化石墨烯(Graphene Oxide, GO)還原。透過SPR即時監測其還原過程,藉由偵測金屬-介電質之間表面折射率的變化與SPR角位移的改變,判斷氧化石墨烯的還原狀況。將電化學還原後的還原氧化石墨烯(Electrochemical Reduce Graphene Oxide, ERGO)進行阻抗分析,觀察其還原後的導電特性。並將此薄膜作為生物蛋白分子檢測薄膜,分析其檢測靈敏性。
本實驗採用兩種不同電化學還原技術進行GO的還原與比較,分別為循環伏安法(cyclic voltammetry, CV)與定電位還原法(Constant voltage)。在不同還原條件的ERGO薄膜,將使用電化學阻抗譜(Electrochemistry Impedance Spectroscopym, EIS)、X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)以及傅立葉轉換紅外光譜(Fourier-Transform Infrared Spectrometer, FTIR)進行分析。
分析的結果顯示,利用電化學表面電漿子技術可以即時監測與逐步控制GO的碳氧比。還原後的ERGO薄膜,其氧官能基比例大幅的下降。使用恆定電位還原120秒之ERGO,其碳氧比由3.97增加至71.46,阻抗值也大比例下降,大幅度提升其導電性。
在生物感測方面,將牛血清蛋白(Bovine Serum Albumin, BSA)修飾於薄膜,並注入不同濃度的Anti-BSA進行阻抗分析,其偵測極限濃度可達到100 pg/ml的高靈敏性。而恆定電位還原法120秒的ERGO薄膜,其Anti-BSA的阻抗響應高於循環伏安法還原100圈的ERGO薄膜約兩倍。
In this study, we use the electrochemical surface plasmon resonance (EC-SPR) to detect the reduction process of Graphene Oxide (GO) in real time. EC-SPR is capable for detect the changes of refractive index near the surface and SPR angular displacement of dielectric-metal interface. The reduction status of GO converted to electrochemical reduce graphene oxide (ERGO). After reductive process, the ERGO film acts as a bio-detection thin film, and we will analyze its detection sensitivity.
In this experiment, we use two different electrochemical process to reduce the GO. One of them is Cyclic Voltammetry (CV) and the other is Constant Voltage (it-curve). In the different reductive conditions of ERGO film, we will analyze material properties by electrochemistry impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectrometer (FTIR).
Analysis results demonstrate that the EC-SPR can quantitatively detect in real time and tune the C/O ratio of GO. The proportion of oxygen functional groups is dropped significantly by these two process. In constant potential reductive process, the C/O ratio is turn from 4.93 into 72.88 after 120 seconds, and the impedance is dropped about 37 times to increase the electrical conductivity.
As a high sensitivity bovine serum albumin (BSA) detection thin film, we inject the different concentrations of Anti-BSA to analyze by EIS technology and the limit of detection (LOD) is 100 pg / ml. The impedance response sensitivity of the constant voltage corresponding to 120 s of ERGO towards Anti-BSA is about 2 fold higher than that of the cyclic voltammetry corresponding to 100 cycles of ERGO.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[2] U. Hofmann and E. König, “Untersuchungen über Graphitoxyd,” Z. Für Anorg. Allg. Chem., vol. 234, no. 4, pp. 311–336, 1937.
[3] F. S. Damos, R. C. S. Luz, and L. T. Kubota, “Investigations of ultrathin polypyrrole films: Formation and effects of doping/dedoping processes on its optical properties by electrochemical surface plasmon resonance (ESPR),” Electrochimica Acta, vol. 51, no. 7, pp. 1304–1312, 2006.
[4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9–10, pp. 351–355, 2008.
[5] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer,” Phys. Rev. Lett., vol. 100, no. 1, 2008.
[6] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008.
[7] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008.
[8] R. Van Noorden, “Chemistry: The trials of new carbon,” Nat. News, vol. 469, no. 7328, pp. 14–16, 2011.
[9] W. Y. Kim and K. S. Kim, “Prediction of very large values of magnetoresistance in a graphene nanoribbon device,” Nat. Nanotechnol., vol. 3, no. 7, pp. 408–412, 2008.
[10] V. Chandra, J. Park, Y. Chun, J. W. Lee, I.-C. Hwang, and K. S. Kim, “Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal,” ACS Nano, vol. 4, no. 7, pp. 3979–3986,2010.
[11] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, and K. Cho, “Control of Graphene Field-Effect Transistors by Interfacial Hydrophobic Self-Assembled Monolayers,” Adv. Mater., vol. 23, no. 30, pp. 3460–3464, 2011.
[12] Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, “Graphene and graphene oxide: biofunctionalization and applications in biotechnology,” Trends Biotechnol., vol. 29, no. 5, pp. 205–212, 2011.
[13] P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater., vol. 7, no. 5, pp. 406–411, 2008.
[14] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[15] A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited,” J. Phys. Chem. B, vol. 102, no. 23, pp. 4477–4482, 1998.
[16] B. C. Brodie, “On the Atomic Weight of Graphite,” Philos. Trans. R. Soc. Lond., vol. 149, pp. 249–259, 1859.
[17] W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 80, no. 6, pp. 1339–1339, 1958.
[18] Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” J. Am. Chem. Soc., vol. 130, no. 18, pp. 5856–5857, 2008.
[19] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[20] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud’homme, and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater., vol. 19, no. 18, pp. 4396–4404, 2007.
[21] A. Ambrosi, A. Bonanni, Z. Sofer, J. S. Cross, and M. Pumera, “Electrochemistry at Chemically Modified Graphenes,” Chem. – Eur. J., vol. 17, no. 38, pp. 10763–10770, 2011.
[22] Z. Sofer, P. Šimek, and M. Pumera, “Complex organic molecules are released during thermal reduction of graphite oxides,” Phys. Chem. Chem. Phys., vol. 15, no. 23, pp. 9257–9264, 2013.
[23] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol., vol. 3, no. 4, pp. 210–215, 2008.
[24] L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure,” Berichte Dtsch. Chem. Ges., vol. 31, no. 2, pp. 1481–1487, 1898.
[25] L. Yang, D. Liu, J. Huang, and T. You, “Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode,” Sens. Actuators B Chem., vol. 193, pp. 166–172, 2014.
[26] X.-Y. Peng, X.-X. Liu, D. Diamond, and K. T. Lau, “Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor,” Carbon, vol. 49, no. 11, pp. 3488–3496, 2011.
[27] Z. Wang, X. Zhou, J. Zhang, F. Boey, and H. Zhang, “Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase,” J. Phys. Chem. C, vol. 113, no. 32, pp. 14071–14075, 2009.
[28] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, and S. Dong, “Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films,” Chem. – Eur. J., vol. 15, no. 25, pp. 6116–6120, 2009.
[29] H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, and X.-H. Xia, “A Green Approach to the Synthesis of Graphene Nanosheets,” ACS Nano, vol. 3, no. 9, pp. 2653–2659,2009.
[30] V. Dharuman, J. H. Hahn, K. Jayakumar, and W. Teng, “Electrochemically reduced graphene–gold nano particle composite on indium tin oxide for label free immuno sensing of estradiol,” Electrochimica Acta, vol. 114, pp. 590–597, 2013.
[31] R. Thürer, T. Vigassy, M. Hirayama, J. Wang, E. Bakker, and E. Pretsch, “Potentiometric Immunoassay with Quantum Dot Labels,” Anal. Chem., vol. 79, no. 13, pp. 5107–5110, 2007.
[32] S. S. Ordóñez and E. Fàbregas, “New antibodies immobilization system into a graphite–polysulfone membrane for amperometric immunosensors,” Biosens. Bioelectron., vol. 22, no. 6, pp. 965–972, 2007.
[33] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, “Reduction of graphene oxide via l - ascorbic acid,” Chem. Commun., vol. 46, no. 7, pp. 1112–1114, 2010.
[34] M. Zhou, Y. Zhai, and S. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Anal. Chem., vol. 81, no. 14, pp. 5603–5613, 2009.
[35] S. Alwarappan, A. Erdem, C. Liu, and C.-Z. Li, “Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications,” J. Phys. Chem. C, vol. 113, no. 20, pp. 8853–8857,2009.
[36] K. S. Kim, Y. M. Um, J. Jang, W.-S. Choe, and P. J. Yoo, “Highly Sensitive Reduced Graphene Oxide Impedance Sensor Harnessing π-Stacking Interaction Mediated Direct Deposition of Protein Probes,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3591–3598, 2013.
[37] A. Bonanni, A. Ambrosi, and M. Pumera, “Nucleic Acid Functionalized Graphene for Biosensing,” Chem. – Eur. J., vol. 18, no. 6, pp. 1668–1673, 2012.
[38] A. Nishikata, Y. Ichihara, and T. Tsuru, “An application of electrochemical impedance spectroscopy to atmospheric corrosion study,” Corros. Sci., vol. 37, no. 6, pp. 897–911, 1995.
[39] F. Mansfeld, “Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection,” Electrochimica Acta, vol. 35, no. 10, pp. 1533–1544, 1990.
[40] Q. Mohsen, Sahar A. Fadlallah and Nahla S. El-Shenawy, “Electrochemical impedance spectroscopy study of the adsorption behavior of bovine serum albumin at biomimetic calcium-phosphate coating” International Journal of Electrochemical Science., vol. 7, no. 5, pp. 4510-4527, 2012.
[41] L. Strašák, J. Dvořák, S. Hasoň, and V. Vetterl, “Electrochemical impedance spectroscopy of polynucleotide adsorption,” Bioelectrochemistry, vol. 56, no. 1–2, pp. 37–41, 2002.
[42] Z. He and F. Mansfeld, “Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies,” Energy & Environmental Science., vol. 2, no. 2, pp. 215-259, 2009.
[43] http://www.pnas.org/content/5/7/275.
[44] D. D. Macdonald, “Reflections on the history of electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 8–9, pp. 1376–1388, 20 2006.
[45] http://w.pic.com.tw/newsdetail.php?id=1169.
[46] J. R. Macdonald, “Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes,” J. Electroanal. Chem. Interfacial Electrochem., vol. 223, no. 1, pp. 25–50, 1987.
[47] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep., vol. 408, no. 3–4, pp. 131–314, 2005.
[48] D. A. Schultz, “Plasmon resonant particles for biological detection,” Curr. Opin. Biotechnol., vol. 14, no. 1, pp. 13–22, 2003.
[49] W. C. Bigelow, D. L. Pickett, and W. A. Zisman, “Oleophobic monolayers,” J. Colloid Sci., vol. 1, no. 6, pp. 513–538, 1946.
[50] J. G. Chen, M. Sandberg, and S. G. Weber, “Chromatographic method for the determination of conditional equilibrium constants for the carbamate formation reaction from amino acids and peptides in aqueous solution,” J. Am. Chem. Soc., vol. 115, no. 16, pp. 7343–7350, 1993.
[51] R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. Phys. Soc. Lond., vol. 18, no. 1, p. 269, 1902.
[52] Lord Rayleigh, “On the Dynamical Theory of Gratings,” Proc. R. Soc. Lond. Math. Phys. Eng. Sci., vol. 79, no. 532, pp. 399–416, 1907.
[53] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev., vol. 106, no. 5, pp. 874–881, 1957.
[54] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Für Phys., vol. 216, no. 4, pp. 398–410.
1968
[55] E. A. Stern and R. A. Ferrell, “Surface Plasma Oscillations of a Degenerate Electron Gas,” Phys. Rev., vol. 120, no. 1, pp. 130–136, 1960.
[56] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators, vol. 4, pp. 299–304, 1983.
[57] N.-F. Chiu, T.-Y. Huang, H.-C. Lai, and K.-C. Liu, “Graphene oxide-based SPR biosensor chip for immunoassay applications,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–7, 2014.
[58] N.-F. Chiu and T.-Y. Huang, “Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors,” Sens. Actuators B Chem., vol. 197, pp. 35–42, 2014.
[59] N.-F. Chiu, S.-Y. Fan, C.-D. Yang, and T.-Y. Huang, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” In Press ,Biosens. Bioelectron.
[60] M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, “Nanoparticle-Enhanced Surface Plasmon Resonance Detection of Proteins at Attomolar Concentrations: Comparing Different Nanoparticle Shapes and Sizes,” Anal. Chem., vol. 84, no. 3, pp. 1702–1707, 2012.
[61] A. Baba, P. Taranekar, R. R. Ponnapati, W. Knoll, and R. C. Advincula, “Electrochemical Surface Plasmon Resonance and Waveguide-Enhanced Glucose Biosensing with N-Alkylaminated Polypyrrole/Glucose Oxidase Multilayers,” ACS Appl. Mater. Interfaces, vol. 2, no. 8, pp. 2347–2354, 2010.
[62] J. E. Garland, K. A. Assiongbon, C. M. Pettit, and D. Roy, “Surface plasmon resonance transients at an electrochemical interface: time resolved measurements using a bicell photodiode,” Anal. Chim. Acta, vol. 475, no. 1–2, pp. 47–58, 2003.
[63] S. Wang, S. Boussaad, S. Wong, and N. J. Tao, “High-Sensitivity Stark Spectroscopy Obtained by Surface Plasmon Resonance Measurement,” Anal. Chem., vol. 72, no. 17, pp. 4003–4008, 2000.
[64] H. Dong, X. Cao, C. M. Li, and W. Hu, “An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing,” Biosens. Bioelectron., vol. 23, no. 7, pp. 1055–1062, 2008.
[65] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem., vol. 2, no. 12, pp. 1015–1024, 2010.
[66] I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry,” J. Phys. Chem. C, vol. 112, no. 23, pp. 8499–8506, 2008.
[67] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem., vol. 54, no. 1–2, pp. 3–15, 1999.
[68] A. Tadjeddine, D. M. Kolb, and R. Kötz, “The study of single crystal electrode surfaces by surface plasmon excitation,” Surf. Sci., vol. 101, no. 1, pp. 277–285, 1980.
[69] J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surf. Sci., vol. 101, no. 1, pp. 499–506, 1980.
[70] Z. Wang, X. Zhou, J. Zhang, F. Boey, and H. Zhang, “Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase,” J. Phys. Chem. C, vol. 113, no. 32, pp. 14071–14075, 2009.
[71] S. K. Mishra, A. K. Srivastava, D. Kumar, A. M. Biradar, and Rajesh, “Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals–reduced graphene oxide hybrid for immunosensor applications,” Nanoscale, vol. 5, no. 21, pp. 10494–10503, 2013.
[72] S. Pei and H.-M. Cheng, “The reduction of graphene oxide,” Carbon, vol. 50, no. 9, pp. 3210–3228, 2012.
[73] S. Y. Toh, K. S. Loh, S. K. Kamarudin, and W. R. W. Daud, “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation,” Chem. Eng. J., vol. 251, pp. 422–434, 2014.
[74] Z. Wang, Y. Hu, W. Yang, M. Zhou, and X. Hu, “Facile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing,” Sensors, vol. 12, no. 4, pp. 4860–4869, 2012.
[75] A. C. M. de Moraes, P. F. Andrade, A. F. de Faria, M. B. Simões, F. C. C. S. Salomão, E. B. Barros, M. do C. Gonçalves, and O. L. Alves, “Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate,” Carbohydr. Polym., vol. 123, pp. 217–227, 2015.
[76] W. J. Basirun, M. Sookhakian, S. Baradaran, M. R. Mahmoudian, and M. Ebadi, “Solid-phase electrochemical reduction of graphene oxide films in alkaline solution,” Nanoscale Res. Lett., vol. 8, no. 1, p. 397, 2013.
[77] Z. Wang, J. Zhang, P. Chen, X. Zhou, Y. Yang, S. Wu, L. Niu, Y. Han, L. Wang, P. Chen, F. Boey, Q. Zhang, B. Liedberg, and H. Zhang, “Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes,” Biosens. Bioelectron., vol. 26, no. 9, pp. 3881–3886, 2011.