簡易檢索 / 詳目顯示

研究生: 黃彥碩
論文名稱: 以H.264壓縮技術為基礎實現環物影片之壓縮與即時播放
Efficient H.264/AVC-based Encoding and Decoding Systems for Object Movies
指導教授: 黃文吉
Hwang, Wen-Jyi
陳祝嵩
Chen, Chu-Song
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 57
中文關鍵詞: 環物影片H.264/AVCJust-in-time rendering增添式實境博物館虛擬展示
英文關鍵詞: Object movie, H.264/AVC, Just-in-time rendering, Augmented reality, Virtual museum exhibitions
論文種類: 學術論文
相關次數: 點閱:214下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路的發達與虛擬實境技術(Virtual Reality)的進步,許多博物館致力於推展數位化典藏虛擬展示,如何有效數位化文物並建立逼真的虛擬展示是許多研究致力的方向。相對於傳統的三維圖學技術,影像式描繪技術可以提供更逼真的虛擬展示效果,但影像式描繪技術往往會遭遇到資料量龐大的問題。本文基於增添式環場技術(Augmented Panorama),採用最新的H.264/AVC視訊壓縮技術減少環物影片(Object Movie)的資料量,並且解決環物影片與環場影像需要透明度資訊來做融合(alpha blending)的問題,並進一步利用透明度資訊改善壓縮與解壓縮的效能。最後,我們實做的解碼器結合多層暫存(multi-layer cache)機制以達成網路虛擬博物館即時互動(Just-In-Time)的目標。實驗結果顯示,我們的虛擬博物館系統播放經過H.264/AVC壓縮後的環物影片仍可以達到15 fps以上的效能,同時環物影片的壓縮率也達到80:1以上,大幅降低虛擬博物館資料量。此外,壓縮的時間也比H.264/AVC reference model software 9.0加快了40%。

    With the progress of the internet and virtual reality technology, a lot of museum start to build virtual exhibitions based on their digital archives. However, how to effectively reconstruct 3D model of artifacts and to build a realistic exhibition are still problem. Recently, image-based rendering technology provides a high visual quality and realistic approach to construct virtual museums. Among these image-based approaches, augmented panorama augments a panorama with object movies in a visually 3D-consistent way to present a virtual museum of exhibits and exhibition rooms. Such approach also can provide photo-realistic visualization of exhibits and real-time interaction between the visitors and the virtual museum. However, the augmented panorama is rarely used in the internet because of the enormous amount of image data. To solve this problem, we adopt H.264/AVC video codec for compressing object movies. To compress object movies by using H.264, the first step is to reorder the two dimensional images of object movies to one dimensional image sequence. With consideration of the property of the object movie, we propose an image clustering algorithm to rearrange the images of object movies. To further increase the decompression performance, we propose a multi-layer caching structure which can make users possible to interact with museum exhibits in an intuitive and just-in-time (JIT) manner. Experimental results show that the compression ratio of object movie is around 80:1, and frame rate is still above 15 fps. Moreover, compared with reference model software 9.0, the compressing time is saved around 40%.

    CHAPTER 1 INTRODUCTION 8 CHAPTER 2 BACKGROUND KNOWLEDGE AND RELATED WORK 10 2.1 VIRTUAL MUSEUM OVER INTERNET 10 2.2 OBJECT MOVIE 13 2.3 H.264/AVC 15 CHAPTER 3 IMAGE CLUSTERING AND IMAGE ARRANGEMENT 22 3.1 PROBLEM FORMULATION 24 3.2 IMAGE CLUSTERING 28 3.3 IMAGE ARRANGEMENT 30 3.4 RATE DISTORTION OPTIMIZATION (RDO) 32 CHAPTER 4 JUST-IN-TIME RENDERING SCHEME OF OBJECT MOVIES 34 4.1 MULTI-LAYER CACHING STRUCTURE 34 4.2 FOREGROUND AND BACKGROUND CODING 40 4.3 THE PERFORMANCE IMPROVEMENT OF COMPRESSING OBJECT MOVIE 42 4.4 OPTIMIZATION DECODER 44 CHAPTER 5 EXPERIMENTAL RESULTS 45 5.1 DIFFERENT COMPRESSIONS FOR OBJECT MOVIE 46 5.2 IMAGE CLUSTERING AND IMAGE ARRANGEMENT 47 5.3 COMPRESSION PERFORMANCE 49 5.4 MULTI-LAYER CACHE TESTING 51 5.5 SYSTEM OVERVIEW 53 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 55 REFERENCES 56

    [1] RT Azuma, “A Survey of Augmented Reality”, Presence: Teleoperators and Virtual Environments, vol. 6, no. 4, pp. 355-385, 1997.
    [2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications, vol. 21, no. 6, pp. 34-47, 2001.
    [3] C.-R. Huang, C.-S. Chen, and P.-C. Chung, “Tangible Photo-Realistic Virtual Museum,” IEEE Computer Graphics and Applications, vol. 25, no.1, pp. 15-17, 2005.
    [4] R. Wojciechowski, K. Walczak, M. White and W. Cellary, “Building Virtual and Augmented Reality Museum Exhibitions”, 3D technologies for the World Wide Web, pp. 135-144, 2004.
    [5] K. Walczak, W. Cellary, and M. White, “Virtual Museum Exhibitions”, IEEE Computer, vol. 39, pp. 93-95, 2006.
    [6] B Hemminger, G Bolas, D Schiff, “Visiting Virtual Reality Museum Exhibits”, Digital Libraries ACM/IEEE, pp. 423, 2004.
    [7] Y.P. Hung, C.S. Chen, Y.P. Tsai, and S.W. Lin, “Augmenting Panoramas with Object Movies by Generating Novel Views with Disparity-Based View Morphing,” J. Visualization and Computer Animation, vol. 13, no. 4, pp. 237-247, 2002.
    [8] H. Y. Shum, S. B. Kang, and S. C. Chan, “Survey of Image-Based Representations and Compression Techniques”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 11, pp. 1020- 1037, 2003.
    [9] X. Tong, R.M. Gray, “Interactive Rendering From Compressed Light Fields”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 11, pp. 1080-1091, 2003.
    [10] B. Girod, C.L. Chang, P. Ramanathan, X Zhu, “Light Field Compression Using Disparity-Compensated Lifting and Shape Adaptation”, IEEE Transactions on Image Processing, vol. 15, no. 4, pp. 793- 806, 2006.
    [11] H.Y. Shum, K.T. Ng, S.C. Chan, “A Virtual Reality System Using the Concentric Mosaic: Construction Rendering, and Data Compression”, IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 85-95, 2005.
    [12] S. E. Chen, “QuickTime VR – An Image-Based Approach to Virtual Environment Navigation”, Proc. Siggraph, ACM, Press, pp. 29-38, 1995.
    [13] Kaidan Inc., http://www.kaidan.com/
    [14] 3D MURALE, http://www.prip.tuwien.ac.at/Research/Murale/index.html
    [15] ARCHEOGUIDE. Augmented Reality-based Cultural Heritage On-site Guide, http://archeoguide.intranet.gr/
    [16] O. Bimber, B. Frohlich, D. Schmalsteig, L.M. Encarnacao, “ The Virtual Showcase”, IEEE Computer Graphics and Applications, vol. 21, no. 6, pp. 48-55, 2001.
    [17] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, “Draft ITU-T recommendation and final draft international standard of joint video specification”, JVTG050, 2003.
    [18] T. Wiegand, G.J. Sullivan, G. Bjntegaard, A. Luthra, “Overview of the H.264/AVC video coding standard”, IEEE Trans. Circuits Syst. Video Tech., vol. 13, pp 560-576, 2003.
    [19] A. Luthra, G.J. Sullivan, T. Wiegand, “Introduction to the special issue on the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Tech., vol. 13, pp. 557- 559, 2003.
    [20] H.264/AVC reference software, http://iphome.hhi.de/suehring/tml/
    [21] Iain E. G. Richardson, “H.264 and MPEG-4 Video Compression Video Coding for Next-generation Multimedia”.
    [22] Z. G. Li, W. Gao, F. Pan, S. W. Ma, K. P. Lim, G. N. Feng, X. Lin, S. Rahardja, H. Q. Lu, and Y. Lu, “Adaptive Rate Control with HRD Consideration”, 8th JVT Meeting, JVTH014, Geneva, May 2003.
    [23] X. Zhou, EQ Li, and Y.-K. Chen, “Implementation of H.264 Decoder on General Purpose Processors with Media Instructions”, SPIE Conference on Image and Video Communication and Processing, pp. 224-235, 2003.
    [24] Z. K. Lin, H. H. Lin, “On The Performance Improvement of H.264 Through Foreground and Background Analyses” , ICME2005, pp. 848-851, 2005.
    [25] GJ Sullivan, P Topiwala, A Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions”, SPIE Conference on Applications of Digital Image Processing, pp. 454-474, 2004.
    [26] S. W. Ma, W. Gao, Y. Lu, and H. Q. Lu, “Proposed Draft Description of Rate Control on JVT Standard”, 6th JVT Meeting, JVT-F086, Awaji, Japan, Dec. 2002.
    [27] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC Baseline Profile Decoder Complexity Analysis,” IEEE Trans. On Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 704- 716, 2003.
    [28] V. Iverson, J. McVeigh, B. Reese, “Real-time H.24-AVC codec on Intel architectures”, IEEE Image Processing, vol.2, pp. 757- 760, 2004.

    QR CODE