研究生: |
范氏芝 Chi Thi Pham |
---|---|
論文名稱: |
An assessment of the magmatic conditions of Late Neoproterozoic collisional and post-collisional granites from the Guéra Massif, South-Central Chad An assessment of the magmatic conditions of Late Neoproterozoic collisional and post-collisional granites from the Guéra Massif, South-Central Chad |
指導教授: |
John Gregory Shellnutt
John Gregory Shellnutt |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 235 |
中文關鍵詞: | Saharan Metacraton 、Guéra Massif 、Central African Orogenic Belt 、post-collisional granite 、collisional granite 、biotite chemistry 、magmatic condition 、oxygen fugacity |
英文關鍵詞: | Central African Orogenic Belt, post-collisional granite, collisional granite, biotite chemistry, magmatic condition, oxygen fugacity |
DOI URL: | http://doi.org/10.6345/NTNU201900697 |
論文種類: | 學術論文 |
相關次數: | 點閱:92 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The Guéra massif of South-Central Chad recorded the late stages of the Pan-African orogeny related to the collision between the Congo Craton and the Saharan Metacraton. The granitic rocks of the Guéra massif are Neoproterozoic and were emplaced during three distinct intervals: ~590 Ma, ~570 Ma, and ~560 Ma. The younger granites from the Guéra massif may be related to the slightly younger granites (~550 Ma) that constitute the Lake Fitri inliers to the west. The oldest (≥ 590 Ma) rocks have geochemical characteristics of collisional granites whereas the younger (≤ 570 Ma) rocks are similar to post-collisional granites. Biotite and amphibole chemistry for both types of granites are studied to estimate the magmatic conditions of the host rock, subsequently, to distinguish the type of granites and interpret the relationship between them, hence, to better understand the geology of south-central Chad area. The biotite from the collisional granites have higher Al and Ti content, and low iron number (Fe# = Fe2+/(Fe2++Mg) = 0.40-0.96). Their average magmatic temperature is 639 ± 73oC, and average pressure is 1.9 ± 0.1 kbars, and the average redox state -18.3 ± 3.1 that lies between the nickel-nickel oxide and quartz-fayalite-magnetite buffers. The biotites from the post-collisional granites are characterized by higher Fe# (≥0.7), and lower Al and Ti contents, as compared to collisional granites. All post-collisional biotites crystallized at lower temperatures (570 Ma = 620 ± 44oC, 560 Ma = 616 ± 31oC and 550 Ma = 613 ± 45oC). However, the Guéra granites are formed at pressures of 1.8 ± 0.1 kbars and 2.1 ± 0.1 kbars with the relative oxidation state transitioning from oxidizing to reducing environment (log fO2 = -19.5 ± 1.9 and -19.1 ± 1.6 for 570 Ma and 560 Ma, respectively) around the quartz-fayalite-magnetite buffers and wüstite-magnetite buffers. In contrast, the Lake Fitri post-collisional granites were emplaced at higher pressure (4.1 ± 0.1 kbars) and higher relative oxidation state, similar to the Guéra massif collisional granites (log fO2= -18.3 ± 3.1). Amphiboles are more common in the post-collisional granites and are calcic with a low magnesian number (Mg#=Mg2+/(Mg2++Fe) ≤ 0.3) which is consistent with the lower oxidation state. It appears that the granites of the Guéra massif display distinct evolution from high to low in temperature, pressure, oxidation state over time. Moreover, the Guéra post-collisional granites had very different magmatic conditions than the post-collisional granites of Lake Fitri, suggesting there may be a terrane boundary between the two exposures.
The Guéra massif of South-Central Chad recorded the late stages of the Pan-African orogeny related to the collision between the Congo Craton and the Saharan Metacraton. The granitic rocks of the Guéra massif are Neoproterozoic and were emplaced during three distinct intervals: ~590 Ma, ~570 Ma, and ~560 Ma. The younger granites from the Guéra massif may be related to the slightly younger granites (~550 Ma) that constitute the Lake Fitri inliers to the west. The oldest (≥ 590 Ma) rocks have geochemical characteristics of collisional granites whereas the younger (≤ 570 Ma) rocks are similar to post-collisional granites. Biotite and amphibole chemistry for both types of granites are studied to estimate the magmatic conditions of the host rock, subsequently, to distinguish the type of granites and interpret the relationship between them, hence, to better understand the geology of south-central Chad area. The biotite from the collisional granites have higher Al and Ti content, and low iron number (Fe# = Fe2+/(Fe2++Mg) = 0.40-0.96). Their average magmatic temperature is 639 ± 73oC, and average pressure is 1.9 ± 0.1 kbars, and the average redox state -18.3 ± 3.1 that lies between the nickel-nickel oxide and quartz-fayalite-magnetite buffers. The biotites from the post-collisional granites are characterized by higher Fe# (≥0.7), and lower Al and Ti contents, as compared to collisional granites. All post-collisional biotites crystallized at lower temperatures (570 Ma = 620 ± 44oC, 560 Ma = 616 ± 31oC and 550 Ma = 613 ± 45oC). However, the Guéra granites are formed at pressures of 1.8 ± 0.1 kbars and 2.1 ± 0.1 kbars with the relative oxidation state transitioning from oxidizing to reducing environment (log fO2 = -19.5 ± 1.9 and -19.1 ± 1.6 for 570 Ma and 560 Ma, respectively) around the quartz-fayalite-magnetite buffers and wüstite-magnetite buffers. In contrast, the Lake Fitri post-collisional granites were emplaced at higher pressure (4.1 ± 0.1 kbars) and higher relative oxidation state, similar to the Guéra massif collisional granites (log fO2= -18.3 ± 3.1). Amphiboles are more common in the post-collisional granites and are calcic with a low magnesian number (Mg#=Mg2+/(Mg2++Fe) ≤ 0.3) which is consistent with the lower oxidation state. It appears that the granites of the Guéra massif display distinct evolution from high to low in temperature, pressure, oxidation state over time. Moreover, the Guéra post-collisional granites had very different magmatic conditions than the post-collisional granites of Lake Fitri, suggesting there may be a terrane boundary between the two exposures.
Key words: Saharan Metacraton, Guéra Massif, Central African Orogenic Belt, post-collisional granite, collisional granite, biotite chemistry, magmatic condition, oxygen fugacity
References
Abdel-Rahman, A.M., 1994. Nature of Biotites from Alkaline, Calc-alkaline, and Peraluminous Magmas. Journal of Petrology, 35, 525-541.
Abdelsalam, M.G., Dawoud, A.S., 1991. The Kabus ophiolite melange, Sudan and its bearing on the western boundary of the Nubian Shield. Journal of the Geological Society, 148, 83-92.
Abdelsalam, M.G., Gao, S.S., Liégeois, J-P., 2011. Upper mantle structure of the Saharan Metacraton. Journal of African Earth Sciences, 60, 328-336.
Abdelsalam, M.G., Liégeois, J-P., Stern, R. J., 2002. The Saharan Metacraton. Journal of African Earth Sciences, 34, 119-136.
Abdelsalam, M.G., Stern, R.J., 1996. Mapping Precambrian structures in the Sahara Desert with SIR-C/X-SAR Radar: The Neoproterozoic Keraf Suture, NE Sudan. Journal of Geophysical Research, 101, 23063-23076.
Ackerson, M.R., Mysen, B.O., Tailby, N., Watson, E.B., 2018. Low-temperature crystallization of granites and the implications for crustal magmatism. Nature, 559, 7712.
Anderson, J.L., 1996. Status of thermo-barometry in granitic batholiths. Earth sciences, 87, 125-138.
Anderson, J.L., Smith, D. R., 1995. The effect of temperature and oxygen fugacity on Al-in-Hornblende barometry. American Mineralogist, 80, 549-559.
Arculus, R.J., 1985. Oxidation Status of the Mantle: Past and Present. In Annual Review of Earth and Planetary Sciences, 13, 75-95.
Ayati, F., Yavuz, F., Asadi, H.H., Richards, J.P., Jourdan, F., 2013. Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper-gold deposit, Markazi, Province, Iran. International Geology Review, 55, 158-184.
Ballard, J.R., Palin, J.M., Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144, 347-364.
Baranov, A.A., Bobrov, A.M., 2018. Crustal structure and properties of Archean cratons of Gondwanaland: Similarity and difference. Russian Geology and Geophysics, 59, 512-524.
Bardintzeff, J-M., Liégeois, J-P., Bonin, B., Bellon, H., Rasamimanana, G., 2010. Madagascar volcanic provinces linked to the Gondwana break-up: Geochemical and isotopic evidences for contrasting mantle sources. Gondwana Research, 18, 295-314.
Barley, M.E., Groves, D.I., 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology, 20, 291-294.
Batchelor, R.A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48, 43-55.
Benkhelil, J., Dainelli, P., Posnard, J.F., Popoff, M., Saugy, L., 1988. The Benue Trough: Wrench fault related basin, on the border of the Equatorial Atlantic, in Triasic-Jurassic Rifting-Continental Breakup and the Origin of the Atlantic Ocean and passive margins, W. Manspeizer (Editor). Developments in Geotectonics, Elsevier, Amsterdam, 22, 789-819.
Bermard, B., 1990. From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geological Journal, 25, 261-270.
Bessoles, B., Trompette, R., 1980. Géologie de L’Afrique: La Chaine Panafricaine, Zone Mobile d’Afrique Central (Partie sud) et Zone Mobile Soudanaise. Mémoire du BRGM, Orléans, 92, 378.
Bickford, M.E., 1988. The formation of continental crust: Part 1. A review of some principles; Part 2. An application to the Proterozoic evolution of the southern North America. Geological Society of America Bulletin, 100, 1375-1391.
Black, R., 1992. Mission géologique au Tchad du 14 Janvier au 08 Féverier 1992. Rapport PNUD/DRGM.
Black, R., Girod, M., 1970. Late Palaeozoic to Recent igneous activity in West Africa and its relationship to basement structure, in African Magmatism and Tectonics, Clifford, T.N. and Gass, I.C. (Editors). Oliver and Boyd, Edinburgh, 185-210.
Blundy, J.D., Holland, T.J.B., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104, 208-224.
Bónová, K., Broska, I., Petrík I., 2010. Biotite from Čierna hora Mountains granitoids (Western Carpathians, Slovakia) and estimation of water contents in granitoid melts. Geologica Carpathica, 61, 3-17.
Bora, S., Kumara, S., 2015. Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. International Geology Review, 57, 1686-1706.
Botcharnikov, R. E., Koepke, J., Holtz, F., Mccammon, C., 2005. The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochimica et Cosmochimica Acta, 69, 5071-5085.
Bowring, S.A., King, J.E., Housh, T.B., Isachsen, C.E., Podosek, F.A., 1989a, Neodymium and Lead isotope evidence for enriched Early Archean crustin North America. Nature, 340, 222-225.
Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Reviews, 108, 16-33.
Buddington, A.F., Lindsley, D.H., 1964. Iron-Titanium Oxide Minerals and Synthetic Equivalents. Journal of Petrology, 5, 310-357.
Buiter, S.J.H., Torsvik, T.H., 2014. A review of Wilson cycle plate margins: a role for mantle plums in continental break-up along sutures? Gondwana Research, 26, 627-653.
Burkhard, D.J.M., 1991. Temperature and redox path of biotite-bearing intrusives: a method of estimation applied to S- and I-type granites from Australia. Earth and Planetary Science letters, 104, 89-98.
Burkhard, D.J.M., 1993. Biotite crystallization temperatures and redox states in granitic rocks as an indicator for tectonic setting. Geologie en Mijnbouw, 71, 337-349.
Burt, D.M., 1998. Vector treatment of the composition of some skarn minerals, in Mineralized Intrusion-Related Skarn Systems, Lentz, D.R., (Editor), Mineralogical Association of Canada, Short Course 26, 51-70.
Carmichael, I.S., Turner, F.J., Verhoogen, J., 1974. Igneous Petrology. New York: McGraw-Hill. 250.
Carmichael, I.S.E., 1991. The redox state of basic and silicic magmas: a reflection of their source regions?, Contributions to Mineralogy and Petrology, 106, 129-141.
Castaing, C., Feybesse, J.-L., Thiéblement, D., Triboulet, C., Chèvremont, P., 1994. Paleogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambrian Research, 69, 327-344.
Castaing, R., 1951. Application of electron probes to local chemical and crystallographic analysis. Ph.D. Thesis, University of Paris. English translation by Duwez, P. and Wittry, D.B., California Institute of Technology, 1955.
Challener, S.C., Glazner, A.F., 2017. Igneous or metamorphic? Hornblende phenocrysts as greenschist facies reaction cells in the Half Dome Granodiorite, California. American Mineralogist, 102, 436-444.
Chiaradia, M., Ulianov, A., Kouzmanov, K., Beate, B., 2012. Why large porphyry Cu deposits like high Sr/Y magmas? Scientific Reports, 2: 685.
Christie-Blick, N., Biddle, K.T., 1985. Deformation and basin formation along strike-slip faults, in Strike-slip Deformation, Basin Formation, and Sedimentation. Biddle, K.T., and Christie-Blick, N., (Editors). SEPM, Special Publication, 37, l-34.
Clarke, D.B., 1992. Granitoid Rocks. Book, Chapman and Hall London.
Clifford, T.N., 1967. The Damaran episode in the Upper Proterozoic structural history of southern Africa. Geological Society of America, Special Paper 92.
Clifford, T.N., 1968. Radiometric dating and the pre-Silurian geology of Africa, in Radiometric dating for geologists, Hamilton, E.I., and Farquhar, R.M., (Editors). Interscience, N. Y., 299-419.
Condie, K.C., 2003. Supercontinents, superplumes and continental growth: The Neoproterozoic record, in Proterozoic East Gondwana: Supercontinent Assembley and Breakup, Yoshida, M., Windley, B.F., Dasguptas, S. (Editors). Geological Society London Special Publications, 206, 1-21.
Condie, K.C., 2005. Earth as an Evolving Planetary System. Elsevier Academic Press, Amsterdam. 447 p.
Condie, K.C., Belousova, E., Griffin, W.L., Sircombe, K.N., 2009. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra. Gondwana Research, 15, 228-242.
Dai, L., Karato, S-I., 2014. Influence of oxygen fugacity on the electrical conductivity of olivine: Implications for the mechanism of conduction. Physics of The Earth and Planetary Interiors, 232, 57-60.
Daly, M.C., Chorowicz, J., Fairhead, J.D., 1989. Rift basin evolution in Africa: The influence of reactivated steep basement shear zones, in Inversion tectonics, Cooper, M.A., and Williams, G.D., (Editors). Geological Social Special Publications, 44, 309-334.
David, J.R., Clive, R.J., 2004. Tectonic evolution of the Doba and Doseo basins, Chad: Controls on trap formation and depositional setting of the three fields area, Chad, in Sandstone Deposition in Lacustrine Environments: Implications for Exploration and Reservoir Development, AAPG Hedberg Research Conference, Abstract.
Dawaï, D., Bouchez, J.L., Paquette, J.L., Tchameni, R., 2013. The Pan-African quartz-syenite of Guider (north-Cameroon): magnetic fabric and U-Pb dating of a late-orogenic emplacement. Precambrian Research, 236, 132-144.
Deer, W.A., Howie, R.A., Zussman, J., 1992. An Introduction to the Rock-Forming Minerals. Book, 2nd edition, Longman, London.
Dilles, J.H., Kent, A.J.R., Wooden, J.L., Tosdal, R.M., Koleszar, A., Lee, R.G., Farmer, L.P., 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110, 241-251.
Dou, L., Wang, J., Wang, R., Wei, X., Shrivastava, C., 2018. Precambrian basement reservoirs: Case study from the northern Bongor Basin, the Republic of Chad. AAPG Bulletin, 102, 1803-1824.
Dou, L., Xiao, K., Hu, Y., Song, H., Cheng, D., du, Y., 2011. Petroleum geology and a model of hydrocarbon accumulations in the Bongor Basin, the Republic of Chad. Acta Petrolei Sinica, 3, 379-386.
Douce, P., A.E., 1993. Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability. Chemical Geology, 108, 133-162.
Doumnang, J.C., Pouclet, A., Vidal, M., Vicat, J.P., 2004. Lithostratigraphy of the Pan-African grounds of the south of Chad (area of the lake of lere) and geodynamic significance of the magmatic formations. IGCP Second Annual Field Conference, Cameroon: Garoua, Abstract.
Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20, 641-644.
El-Makhrouf, A.A., 1988. Tectonic interpretation of Jebel Eghei area and its regional application to Tibesti orogenic belt, south-central Libya (S.P.L.A.J.). Journal of African Earth Sciences, 7, 945-967.
Eugster, H.P., Wones, D.R., 1962. Stability reactions of the ferruginous biotite, annite. Journal of Petrology, 3, 82-125.
Foster, M.D., 1960. Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Paper 354B, 1-49.
Freiberg, R., Hecht, L., Cuney, M., Morteani, G., 2001. Secondary Ca-Al silicates in plutonic rocks and implications for their cooling history. Contributions to Mineralogy and Petrology, 141, 415-429.
Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048.
Frost, B.R., 1991. Oxide Minerals: Petrologic and Magnetic Significance, in Mineralogical Society of America, Reviews in Mineralogy, vole 25, Lindsley, D.H. (Editor).
Frost, B.R., Lindsley, D.H., 1991. Occurrence of iron-titanium oxides in igneous rocks, in Mineralogical Society of America. Reviews in Mineralogy, 25, 433-468.
Frost, D.J., McCammon, C.A., 2008. The Redox State of Earth’s Mantle. Annual Review of Earth and Planetary Sciences, 36, 389-420.
Genik, G.J., 1992. Regional framework, structural and petroleum aspects of rift basins in Niger, Chad and the Central African Republic (CAR). Tectonophysics, 213, 169-185.
Genik, G.J., 1993. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77, 1405-1434.
Ghent, E.D., Nicholls, J., Siminy, P.S., Sevigny, H.H., Stout, M.Z., 1991. Hornblende Geobarometry of the Nelson Batholith, Southeastern British Columbia: Tectonic Implications. Canadian Journal of Earth Science, 28, 1982-1991.
Ghiorso, M.S., Sack, O., 1991. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contributions to Mineralogy and Petrology, 108, 485-510.
Ghuma, M.A., Rogers, J.J.W, 1978. Geology, geochemistry and tectonic setting of the Ben Ghanenma batholith, Tibesti massif, Southern Lybia. Bulletin of the Geological Society of America, 89, 1351-1358.
Giret, A., Bonin, B., Léger, J.M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring complexes. Canadian Mineralogist, 18, 481-495.
Glazner, A.F., Johnson B.R., 2013. Late crystallization of K-feldspar and the paradox of megacrystic granites. Contributions to Mineralogy and Petrology, 166, 777-779.
Gray, W., Glazner, A.F., Colemant, D.S., Bartley, J.M., 2007. Long-term geochemical variability of the Late Cretaceous Toulumne Intrusive Suite, central Sierra Nevada, California. Geological Society, London, Special Publications, 304, 183-201.
Green, T.H., Ringwood, A.E., 1968. Genesis of the calc-alkaline igneous rock suite. Contrbutions to Mineralogy and Petrology, 18, 105-162.
Guiraud, R., Maurin, J.C., 1992. Early Cretaceous rifts of Western and Central Africa: an overview. Tectonophysics, 213, 153-168.
Hall, A.J., 1941. The relation between color and chemical composition in the biotites. American Mineralogy, 26, 29-33.
Hallett, D., Clark-Lowes, D., 2016. Libya Petroleum Geology of Libya. Book, 2nd edition, Elsevier.
Hammarstrom, J.M., Zen, E., 1986. Aluminum in hornblende: An empirical igneous geo-barometer. American Mineralogist, 71, 1297-1313.
Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986. Geochemical characteristics of collision-zone magmatism in Collision tectonics, Coward, M.P. and Ries, A.C. (Editors). Geological Society Special Publication, 19, 67-81.
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A. KEMP, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Journal of the Geological Society, London, 167, 229-248.
Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., Storey, C.D., 2010. The generation and evolution of the continental crust. Journal of the Geological Society, London, 167, 229-248.
Hecht, L., 1994. The chemical composition of biotite as an indicator of magmatic fractionation and metasomatism in Sn-specialised granites of the Fichtelgebirge (NW Bohemian Massif, Germany), in Metallogeny of collisional orogens, Seltmann, R., Kämpf, H. and Möller, P. (Editors). Czech Geological Survey, Praha, 295-300.
Helz, R.T., 1982. Phase relations and compositions of amphiboles produced in studies of the melting behavior of rocks, in Amphiboles: Petrology and experimental phase relations, v. 9B of review in Mineralogy, Washington, D.C., Veblen, D.R., Ribbe, P.H. (Editors). Mineralogical Society of America, 279-353.
Henry, B., Liégeois, J.-P., Nouar, O., Derder, M.E.M., Bayou, B., Bruguier, O., Ouabadi, A., Belhai, D., Amenna, M., Hemmi, A., Ayache, M., 2009. Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan Metacraton, eastern Hoggar, Tuareg shield, Algeria: an AMS and U-Pb zircon age study. Tectonophysics, 474, 417-434.
Hess, P.C., 1989. Origins of Igneous rocks. Book, Cambridge, Mass.: Harvard University Press.
Hirsch, L.M., 1991. The Fe-FeO buffer at lower mantle pressures and temperatures. Geophysical Research Letters, 18, 1309-1312.
Hoffman, P.H., 1988. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16, 543-603.
Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic-amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433-447.
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H., Gisson, V.B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231-239.
Isseini, M., 2011. Croissance et différenciation crustales au Néoprotérozoïque. Exemple du domaine panafricain du Mayo Kebbi au Sud-Ouest du Tchad. Thèse de doctorat de l’Université Henri Poincaré, Nancy I, 345p.
Isseini, M., Andre-Mayer, A.-S., Vanderhaegh, O., Barbey, P., Deloule, E., 2012. A-type granites from the Pan-African orogenic belt in southwestern Chad constrained using geochemistry, Sr-Nd isotopes and U-Pb geochronology. Lithos, 153, 39-52.
Isseini, M., Hamit, A., Abderamane, M., 2013. The tectonic and geological framework of the Mongo area, a segment of the Pan-African Guera Massif in Central Chad: evidences from field observations and remote sensing. Revue Scientifique du Tchad, 1, 4-12.
Jayasuriya, K.D., O’Neill, H.S.C., Berry, A., Campbell, S.J., 2004. A Mössbauer Study of the Oxidation State of Fe in Silicate Melts. American Mineralogist, 89, 1597-1609.
Johnson, C.M, Rutherford, M.J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with applicable to Long Valley Caldera (California) volcanic rocks. Geology, 17, 837-841.
Kadik, A.A., 1990. Redox state of the upper mantle. Proceeding of the Indian Academy of Sciences-Earth and Planetary Sciences, 99, 141-152.
Kadik, A.A., 2006. Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials. Geochemistry International, 44, 56-71.
Karimpour, M.H., Stern, C.R., Mouradi, M., 2011. Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad, Iran. Journal of Crystallography and Mineralogy, 18, 89-100.
Kasser, M. Y., 1995. Evolution précambrienne de la région du Mayo Kebbi (Tchad). Un segment de la Chaîne Panafricaine. Thèse de Doctorat, Muséum d'Histoire Naturelle de Paris (France), 217 pp.
Kennedy, W., 1964. The Structural Differentiation of Africa in the Pan-African (500 ± m.y.) Tectonic Episode. University of Leeds (Session 1962-63), 8th Annual Report of the Research Institute of African Geology, 48-49.
Kilinc, A., Carmichael, I.S.E., Rivers, M.L., Sack, R.O., 1983. The Ferric-Ferrous Ratio of Natural Silicate Liquids Equilibrated in Air. Contributions to Mineralogy and Petrology, 83, 136-140.
Klerkx, J., Deutsch, S., 1977. Resultats preliminaires obtenus par la methode Rb/Sr sur l’age des formations Precambriennes de la region d’Uweinat (Libye). Musee Royal de l’Afrique Centrale. Déepartement Géeologie Minéeralogie Rapport Annuel, 83-94.
Kress, V.C., Carmichael, I.S.E., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82-92.
Kröner, A., 1979. Pan-African mobile belts as evidence for a transitional tectonic regime from intraplate orogeny to plate margin orogeny, in Evolution and mineralization of the Arabian-Nubian shield, Tahoun, S.A. (Editor). Pergamon Press, Oxford, 1, 21-37.
Kröner, A., 2004. Pan-African Orogeny. Encyclopedia of Geology, 1, 1-12.
Kumar, S., Pathak, M., 2010. Mineralogy and geochemistry of biotites from Proterozoic granitoid of western Arunachal Himalaya: evidence of bimodal granitogeny and tectonic affinity. Journal of the Geological Society of India, 75, 715-730.
Kusnir, I., Moutaye, H. A., 1997. Ressources minérales du Tchad: une revue. Journal of African Earth Sciences, 24, 549-562.
Kusnir, I., Schneider, J-L., 1995. Géologie, ressources minérales et ressources en eau du Tchad. Centre National d’ Appui à là Recherche (Publisher), Collection Travaux et documents scientifiques du Tchad., Série Connaissance du Tchad, 1.
Küster, D., Liégeois, J.P., Matukov, D., Sergeev, S., Lucassen, F., 2008. Zircon geochronology and Sr, Nd, Pb isotope geochemistry of granitoids from Bayuda Desert and Sabaloka (Sudan): evidence for a Bayudian event (920-900 Ma) preceding the Pan-African orogenic cycle (860-590 Ma) at the eastern boundary of the Saharan Metacraton. Precambrian Research, 164, 16-39.
Lalonde, A.E., Bernard, P., 1993. Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn interval zone of Wopmay orogen, Northwest Territories. Canadian Mineralogist, 31, 203-217.
Lang, J.R., Baker, T., 2001. Intrusion-related gold systems: the present level of understanding. Mineralium Deposita, 36, 477-489.
Larsen, L.M., 1976. Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. Journal of Petrology, 17, 258-290.
Leake, B.E., 1978. Nomenclature of amphiboles. Canadian Mineralogist, 16, 501-520.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti. L., Whittaker, E.J.W., Guo, Y., 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 35, 219-246.
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N., Whittaker, E.J.W., 2004. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Mineralogical Magazine, 68, 209-215.
Li, X., Chi, G., Zhou, Y., Deng, T., Zhang, J., 2017. Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny. Ore Geology Reviews, 88, 690-701.
Liang, H.Y., Sun, W.D., Su, W.C., Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104, 587-596.
Liégeois, J.P., Black, R., Navez, J., Latouche, L., 1994. Early and late Pan-African orogenies in the Air assembly of terranes (Tuareg Shield, Niger). Precambrian Research, 67, 59-88.
Liégeois, J.P., Latouche, L., Boughrara, M., Navez, J., Guiraud, M., 2003. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. Journal of African Earth Sciences, 37, 161-190.
Lindsley, D. H., 1991. Experimental studies of oxide minerals. Reviews in Mineralogy and Geochemistry, 25, 69-106.
Liu, B., Ma, C., Liu, Y., Xiong, F., 2010. Mineral chemistry of boitites from the Tongshankou Cu-Mo deposit: implications for the petrogenesis and mineralization. Acta Petrologica et Mineralogica, 29, 51-165 (in Chinese with English abstract).
Luhr, J.F., Carmichael, I.S.E., Varekamp, J.C., 1984. The 1982 eruptions of El Chichon volcano, Chiapas, Mexico-Mineralogy petrology of the anhydrite bearing pumices. Journal of Volcanology and Geothermal Research, 23, 69-108.
Luth, W.C., Jahns, R.H., Tuttle, O.F., 1964. The granite system at pressures of 4 to 10 kilobars. Journal of Geophysical Research, 69, 759-773.
Machev, P., Klain, L., Hecht, L., 2004. Mineralogy and chemistry of biotites from the belogradchik pluton-some petrological implications for granitoid magmatism in northwest Bulgaria. Bulgarian Geological Society, Annual Scientific Conference “Geology 2004”.
McLoughlin S., 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271-300.
Medlicott, H.B., Blanford, W.T., Ball, V., Mallet, F.R., 1879. A Manual of the Geology of India by Geological Survey of India. Calcutta, Geological Survey Office.
Meinert, L.D., 1998. A review of skarns that contain gold. In: Lentz, D.R. (Ed.), Mineralized Intrusion-related Skarn Systems. Mineralogical Association of Canada, Short Course, 26, 359-414.
Mengason, M.J., Candela, P.A., Piccoli, P.M., 2011. Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S0O melt-rhyolite melt: impact of sulfide segregation on arc magma evolution. Geochimica Cosmochimica Acta, 75, 7018-7030.
Moradi, R., Boomeri, M., Nakashima, K., 2017. Chemical composition of biotite from the Lar Cu-Mo prospect igneous rocks, Southeastern part of Iran. International Journal of Green Pharmacy, 11, 549-560.
Murphy, M.D., Sparks, R.S.J., Barclay, J., 2000. Remobilization of Andesite Magma by Intrusion of MaficMagma at the Soufriere Hills Volcano, Montserrat, West Indies. Journal of Petrology, 41, 21-42.
Mutch, E.J.F., Blundy, J.D., Tattitch, B.C., Cooper, F.J., Brooker, R.A., 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171, 27p.
Nachit, H., Ibhi, A., Abia, E.H., Ohoud, M.B., 2005. Discrimination between primary magmatic biotitic, re-equilibrated biotitic and informed biotitic. Comptes Rendus Geosciences, 337, 1415-1420.
Nachit, H., Razafimahefa, N., Stussi, J.M., Carron, J. P., 1985. Composition chimiques des biotite et typologie.
Nance, R.D., Murphy, J.B., Santosh, M., 2014. The supercontinent cycle: A retrospective essay. Gondwana Research, 25, 4-29.
Nenova, 1997. Short Note “Fe23”: A computer program for calculating the number of Fe2+ and Fe3+ ions in minerals. Computers and Geosciences, 23, 215-219.
Neumayr, M., 1887. Erdgeschichte II. Beschreibende Geologie. XII + 880 p., Leipzig.
Njanko, T., Nédélec, A., Affaton, P., 2006. Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): petrology and geodynamic significance. Journal of African Earth Sciences, 44, 494-510.
Nkouandou, O.F., Bardintzeff, J.M., Mahamat, O., Mefire, A.F., Ganwa, A.A, 2017. The dolerite dyke swarm of Mongo, Guéra Massif (Chad, Central Africa): Geological setting, petrography, and geochemistry. Open Geosciences, 9, 138-150.
Nzenti, J.P., Kapajika, B., Worner, G., Toto R. L., 2006. Syn-kinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. Journal African Earth Sciences, 45, 74-86.
Ottonello, G., Moretti, R., Marini, L., Zuccolini, M.V., 2001. Oxidation state of iron in silicate glasses and melts: A thermochemical model. Chemical Geology, 174, 157-179.
Paul J.S., 1998. Post-collisional strongly peraluminous granites. Lithos, 45, 29-44.
Pearce, J., Harris, N., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983.
Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956-983.
Pegram, W.J., Register, J.K., Fullagar, P.D., Ghuma, M.A., Rogers, J.J.W., 1976. Pan-African ages from a Tibesti massif batholith, southern Libya. Earth and Planetary Scientific Letters, 30, 123-128.
Penaye, J., Kröner, A., Toteu, S.F., Van Schumus V., W.R., Doumnang, J.-C., 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) Pan-African magmatic arc in south-western Chad. Journal of African Earth Sciences, 44, 530-542.
Permenter J.L., Oppenheimer, C., 2007. Volcanoes of the Tibesti massif (Chad, northern Africa). Bulletin of Volcanology, 69, 609-626.
Pham T.N.H., 2018. Timing and petrogenesis of collisional and post-collisional rocks of Guéra Massif, Republic of Chad. MSc. Thesis.
Pin, C., Poidevin, J.L., 1987. U-Pb zircon evidence for a Pan-African granulite facies metamorphism in the Central African Republic. A new interpretation of the high-grade series of the northern border of the Congo Craton. Precambrian Research, 36, 303-312.
Pitcher, W.S., 1983. Granite: Typology, geological environment and melting relationship, in Migmatites, Melting and Metamorphism, Atherton, M.P., Gribble, C.D. (Editors). Nantwich, Shiva, 277-287.
Piwinskii, A.J., 1968. Experimental studies of igneous rock series, central Sierra Nevada batholith, California. Journal of Geology, 76, 193-215.
Poidevin, J.L., 1994. Boninite-like rocks from the Paleoproterozoic greenstone belt of Bogoin, Central African Republic: geochemistry and petrogenesis. Precambrian Research, 68, 97-113.
Pouclet, A., Vidal, M., Doumnang, J.C., Vicat, J.P., Tchameni, R., 2006. Neoproterozoic crustal evolution in Southwestern Chad: Pan-African Ocean basin closing, arc accretion and late to post-orogenic granitic. Journal of African Earth Science, 44, 543-560.
Qiu, J.T., Yu, X.Q., Santosh, M., Zhang, D.H., Chen, S.Q., Li, P.J., 2013. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Mineralium Deposita, 48, 545-556.
Reeves, C., 2014. The position of Madagascar within Gondwana and its movements during Gondwana dispersal. Journal of African Earth Sciences, 94, 45-57.
Report of the IAEA-supported regional technical cooperation project RAF/7/011, Reproduced by the IAEA Vienna, Austria, 2017. Integrated and Sustainable Management of Shared Aquifer Systems and Basins of the Sahel Region: Lake Chad basin.
Richards, J.P., 2009. Post-subduction porphyry Cu-Au and epithermal Au deposits: Products of re-melting of subduction-modified lithosphere. Geology, 37, 247-250.
Richards, J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233, 27-45.
Richards, J.P., Spell, T., Ramell, E., Razique, A., Fletcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107, 295-332.
Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermo-barometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 45-66.
Rieder, M., Cavazzini, G., D’yakonov Vsegei Y. S., Frank-Kamenetskii, V. A., Gottardi, G., Stephen Guggenheim, S., Pavel V. Koval’, Müller, G., Neiva, A.M.R., Edward, W.R., Robert, J-L., Sassi F.P., Takeda, H., Weiss, Z., Wones, D.R, 1998. Nomenclature of the micas. Canadian Mineralogist, 36.
Riley, T.R., Knight, K.B., 2001. Age of pre-break-up Gondwana magmatism. Antarctic Science, 13, 99-110.
Rogers, John J. W., M. Santosh. Continents and Supercontinents. Oxford: Oxford UP, 2004.
Rollinson, H., 2015. Slab and sediment melting during subduction initiation: Granitoid dykes from the mantle section of the Oman ophiolite: Contributions to Mineralogy and Petrology, 170, 1-20.
Rudnick, R.L., Fountain, D.M., 1995. Nature and compositions of the continental crust-a lower crustal prospective. Review in Geophysics, 33, 267-309.
Rudnick, R.L., Gao, S., 2003. Composition of the continental crust, in The Crust, Treatise on Geochemsitry 3, Rudnick R.L., (editor), Amstersdam, Elsevier, 1-64.
Ryerson, F.J., Durham, W.B., Cherniak, D.J., Lanford, W.A., 1989. Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. Journal of Geophysical Research Atmospheres, 94, 4105-4118.
Saleh, M.A., 1994. Bibliographie Géologique du Tchad 1903-1994. CIFEG Publication Occasionelle 30. I-XXIV, 1-181.
Schlüter, T., 2005. Geological Atlas of Africa With Notes on Stratigraphy, Tectonics, Economic Geology, Geohazards and Geosites of Each Country. Springer-Verlag Berlin Heidelberg.
Schlüter, T., 2008. Geological Atlas of Africa. Springer-Verlag, Berlin, 307.
Schmidt, M.W.,1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304-310.
Schneider, J.L., Wolff, J.P., 1992. Carte géologique et carte hydrogéologique au 1/1500000 de la République du Tchad, Mémoire Explicatif. Document BRGM, vole 1 and 2, 689p.
Seguem, N., Alexandre, G.A., Klötzli, U., Kepnamou, A.D., Emmanuel, E.G., 2014. Petrography and Geochemistry of Precambrian Basement Straddling the Cameroon-Chad Border: The Touboro Baïbokoum Area. International Journal of Geosciences, 5, 418-431.
Semiz, B., Çoban, H., Roden, M. F., Özpınar, Y., Flower, M. F., McGregor, H., 2012. Mineral composition in cognate inclusions in Late Miocene-Early Pliocene potassic lamprophyres with affinities to lamproites from the Denizli region, Western Anatolia, Turkey: implications for uppermost mantle processes in a back-arc setting. Lithos, 134, 253-272.
Shabani, A.A.T., Lalonde, A.E., Whalen, J.B., 2003. Composition of biotite from granitic rocks of the Canadian Appalachian orogen: A potential tectonomagmatic indicator? The Canadian Mineralogist, 41, 1381-1396.
Shand, S.J., 1943. Eruptive rocks. their genesis composition, classification, and their relation to ore-deposits with a Chapter on Meteorite. John Wiley and Sons, New York.
Shand, S.J., 1944. The Terminology of Late Magmatic and Post Magmatic Processes. Journal of Geology, 52, 342-350.
Shang, C.K., Satir, M., Morteani, G., Taubald, H., 2010. Zircon and titanite age evidence for coeval granitization and migmatization of the early Middle and early Late Proterozoic Saharan Metacraton; example from the central North Sudan basement. Journal of African Earth Sciences, 57, 492-524.
Sharma, R.S., 2009. Cratons of the Indian Shield. Lecture Notes in Earth Sciences, 41-115.
Shellnutt, J.G, Pham, T.N.H., Denyszyn, S., Yeh, M.W., Lee, T-Y., 2017. Timing of collisional and post-collisional Pan-African Orogeny silicic magmatism in south-central Chad. Precambrian Research, 301, 113-123.
Shellnutt, J.G., Lee, T.Y., Yang, C.C., Hu, S.T., Wu, J.C., Wang, K.L., and Lo, C.H., 2015. Late Permian mafic rocks identified within the Doba basin of southern Chad and their relationship to the boundary of the Saharan Metacraton. Geological Magazine, 152, 1073-1084.
Shellnutt, J.G., Yeh, M.-W., Lee, T.-Y., Iizuka, Y., Pham, N.H.T., Yang, C.-C., 2018. The origin of Late Ediacaran post-collisional granites near the Chad Lineament, Saharan Metacraton, South-Central Chad. Lithos, 304-307, 450-467.
Shen, P., Hattori, K., Pan, H., Jackson, S., Seitmuratova, E., 2015. Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt. Economic Geology, 110, 1861-1878.
Shen, P., Pan, H., 2015. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China. Mineralium Deposita, 50, 967-986.
Sial, A.N., Bettencourt, J.S., De Campos, C.P. and Ferreira, V.P. (Ediors), 2011. Granite-Related Ore Deposits. Geological Society, London, Special Publications, 350, 1-5.
Smith, AG., 1999. Gondwana: its shape, size and position from Cambrian to Triassic times. Journal of African Earth Sciences, 28, 71-97.
Sorokhtin, O.G., Chilingarian, G.V., Sorokhtin, N.O., 2011. Evolution of earth and its climate: Birth, life and death of earth. Development in Earth and Environmental Sciences, 10, 1-576.
Spear, F.S., 1981. Amphibole-plagioclase equilibria: an empirical model for the relation albite + tremolite = edenite + 4 quartz. Contributions to Mineralogy and Petrology, 77, 355-364.
Stern, R.J., 1994. Arc assembly and continental collision in the Neoproterozoic E African Orogen: implication for the consolidation of Gondwanaland. Annual Reviews of Earth Planetary Sciences, 22, 319-351.
Stern, R.J., Kröner, A., Reischmann, T., Bender, R., Dawoud, A.S., 1994. Precambrian basement around Wadi Halfa: a new perspective on the evolution of the Central Saharan Ghost craton. Geologische Rundschau, 83, 564-577.
Stone, M., 2000. Petrogenetic implications from biotite compositional variations in the Cornubian granite batholith. Mineralogical Magazine, 64, 729-735.
Storey B.C., 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature, 377, 301-308.
Stussi, J.M., Cuney, M., 1996. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas by Abdel-Fattah M. Abdel-Rahman: a comment. Journal of Petrology, 37, 1025-1029.
Suayah, I.B., Miller, J.S., Miller, B.V., Bayer, T.M., Rogers, J.J., 2006. Tectonic significance of Late Neoproterozoic granites from the Tibesti massif in southern Libya inferred from Sr and Nd isotopes and U-Pb zircon data. Journal of African Earth Sciences, 44, 561-570.
Subrahmanyam, C., Verma, R.K., 1982. Gravity interpretation of Dharwar greenstone-gneiss-granite terrain in the south Indian shield, its geological implications. Tectonophysics, 84, 225-245.
Suess, E., 1885. Das Antlitz der Erde I-III/2. Prag and Leipzig (Tempsky and Freytag) 1885.
Suess, E., 1885. DassAntilitz der Erde. Vienna. 1-704.
Sultan, M., Tucker, R.D., El Alfy, Z., Attia, R., Ragab, A.G., 1994. U-Pb (zircon) ages for the gneissic terrane west of the Nile, southern Egypt. Geologische Rundschau, 83, 514-522.
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E., Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65, 97-131.
Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R., Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta. 103, 263-275.
Sven, M., 1985. Principles of Igneous Petrology. Springer-Verlag Berlin Heidelberg.
Svensen, H.H., Torsvik, T.H., Callegaro, S., Augland, L., Heimdal, T.H., Jerram D.A., Planke, S., Pereira, E., 2018. Gondwana Large Igneous Provinces: plate reconstructions, volcanic basins and sill volumes, in Large Igneous Provinces from Gondwana and Adjacent Regions. Geological Society, London, Special Publications, 463.
Taylor, S.R., McLennan, S.M., 1995. The geochemical evolution of the continental crust. Reviewsof Geophysics, 33, 241-265.
Thomas, W.M., Ernst, W.G., 1990. The aluminum content of hornblende in calc-alkaline granitic rocks: A mineralogic barometer calibrated experimentally to 12 kbars, in Fluid-mineral interactions, Spencer R.J. and Chou I-M. (Editors); a tribute to H. P. Eugster. Geochemical Society Special Publication, 2, 59-63.
Thorne, K.G., Lentz, D.R., Hall, D.C., Yang, X.M., 2002. Petrology, geochemistry, and geochronology of the granitic pegmatite and aplite dykes associated with the Clarence Stream gold deposit, southwestern New Brunswick. Geological Survey of Canada, Current Research 2002-E12, 1-13.
Tindle A.G., Webb P.C., 1990. Formula Unit Calculations-with optional calculated Li2O.2.Li2O and H2O calculations. European Journal of Mineralogy, 2, 595-610.
Torsvik, T.H., Cocks, L.R.M., 2013. Gondwana from top to base in space and time. Gondwana research, 24, 999-1030.
Toteu, S.F., Fouateu, R.Y., Penaye, J., Tchakounte, J., Mouangue, A.C.S., Van Schumus, W.R., Deloule, E., Stendal, H., 2006a. U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. Journal of African Earth Sciences, 44, 479-493.
Toteu, S.F., Penaye, J., Deloule, E., Van Schumus, W.R., Tchameni, R., 2006b. Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). Journal of African Earth Sciences, 44, 428-442.
Toteu, S.F., Penaye, J., Djomani, Y.H.P., 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences, 41, 73-85.
Toteu, S.F., Van Schumus, W.R., Penaye, J., Michard, A., 2001. New U-Pb and Sm-Nd data from North-central Cameroon and its bearing on the pre-Pan-African history of Central Africa. Precambrian Research, 108, 45-73.
Trail, D., Watson, E.B., Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97, 70-87.
Tuttle O.F., Bowen N.L., 1958. Origin of granite in the light of experimental of studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O by O.F. Tuttle and N.L. Bowen. Geological Society of America.
Uchida, E., Endo, S., Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57, 47-56.
Wedepohl, K.H., 1995. The composition of the continntal crust. Geochimica et Cosmochimiaca Acta, 59, 1217-1232.
Wegener, A., 1912a. Die Entstehung der Kontinente. Petermanns Mitteilungen, 185-195, 253-256, 305-309, Gotha.
Wegener, A., 1912b. Die Herausbildung der Grossformen der Erdinde (Kontinente und Ozeane), auf geophysikalischer Grundlage. Pertermanns Geographische Mitteilungen, 58, 185-195, 253-256, 305-309.
Wegener, A., 1915. Die Entstchung der Kontinente und Ozeane. Friedrich Vieweg, Brunswick.
Windley, B.F., 1996. The evolving continent, 3rd edition. Chichester, New York, Brisbane, Toronto, Singapore: John Wiley and Sons.
Wones, D., Eugster, H., 1965. Stability of biotite: experiment, theory, and application. American, Mineralogist, 50, 1228-1272.
Wones, D.R., 1981. Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31, 191-212.
Worsley, T.R., Nance, R.D., Moody, J.B., 1986. Tectonic cycles and the history of the earth's biogeochemical and paleoceanographic record. Paleoceanography, 1, 233-263.
Wyborn D., Sun. S.S., 1994. Sulfur-undersaturated magmatism: A key factor for generating magma-related copper-gold deposits. AGSO Research Newsletter, 21, 7-8.
Yang, X.M., Lentz, D.R., Chi, G., Thorne, K.G., 2008. Geochemical characteristics of gold-related granitoids in southwestern New Brunswick, Canada. Lithos, 104, 355-377.
Yavuz, F., 2003a. Evaluating micas in petrologic and metallogenic aspect: Idefinitions and structure of the computer program MICA+. Computers and Geosciences, 29, 1203-1213.
Yavuz, F., 2003b. Evaluating micas in petrologic and metallogenic aspect: Part II-Applications using the computer program Mica+. Computers and Geosciences, 29, 1215-1228.
Yoshida, M., Hamano, Y., 2015. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection. Scientific Reports, 5: 8407.
Zen, E., 1988. Plumbing the depths of batholiths. American Journal of Science, 289, 1137-1157.
Zhang, H., Ling, M.-X., Liu, Y.-L., Tu, X.-L., Wang, F.-Y., Li, C.-Y., Liang, H.-Y., Yang, X.-Y., Arndt, N. T., Sun, W.-D., 2013. High oxygen fugacity and slab melting linked to Cu mineralization: evidence from Dexing porphyry copper deposits, southeastern China. Journal of Geology, 121, 289-305.
Zhang, W., Lentz, D. R., Thorne, K. G., McFarlane, C., 2016. Geochemical characteristics of biotite from intrusive felsic rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems. Ore Geology Reviews, 77, 82-96.
Zhang, Z.Y., Du, Y.S., Teng, C.Y., Zhang, J., Z.S. Pang., 2014. Petrogenesis, geochronology, and tectonic significance of granitoids in the Tongshan intrusion, Anhui Province, Middle-Lower Yangtze River Valley, eastern China, 79, 792-809.
Zhao, D., Zhang, Y., Essene, E.J., 2015. Electron probe microanalysis and microscopy: Principles and applications in characterization of mineral inclusions in chromite from diamond deposit. Ore Geology Reviews, 65, 733-748.
Zheng, W., Mao, J.-W., Pirajno, F., Zhao, H.-j., Zhao, C.-S., Mao, Z.-H., Wang, Y.-J., 2015. Geochronology and geochemistry of the Shilu Cu-Mo deposit in the Yunkai area, Guangdong Province, South China, and its implication. Ore Geology Reviews, 67, 382-398.