簡易檢索 / 詳目顯示

研究生: 許詩弘
Hus, Shih-Hong
論文名稱: 含釕化合物修飾碳管探討:光磁轉換機制 STM/STS 分析
Ruthenium Complex Modified Photomagnetic Carbon Nanotube:Characterzation
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 釕錯合物掃描穿隧顯微鏡掃描穿隧能譜磁性奈米碳管磁力顯微鏡
英文關鍵詞: Ruthenium complex, Scanning tunneling mircoscopy, Scanning tunneling spectroscopy, Carbon nanotube, Field-Mode AFM
DOI URL: https://doi.org/10.6345/NTNU202204293
論文種類: 學術論文
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑒於2,2-二吡啶-5-胺基菲羅啉釕修飾奈米碳管在室溫下具有光磁轉換與光電轉換的應用潛力,本實驗進以STM影像分析術對其表面進行能態分析,探討這些修飾碳管表面受到473 nm雷射光照射時,其電子傳導能態密度分布是否與修飾物組成與大小有關。實驗結果顯示:於光照下,2,2-二吡啶-5-胺基菲繞啉釕修飾物可縮小奈米碳管表面電子傳導能隙 (Energy gap),因而提升碳管表面上電子的傳導速率。實驗結果也顯示:碳管表面電子傳導能帶間隙與修飾物粒徑大小有關,隨釕修飾物粒徑變大而變大,致使其光電流隨釕修飾物粒徑增大而降低。雖然如此,其光磁性則隨釕修飾物粒徑增大而增大。

    Carbon nanotubes (CNTs) show photomagnetism and photoconductivity at room temperature after the modification with bis(2,2-bipyridine)-5-amino-1,10-phenanthroline ruthenium (II) (Ru(bpy)2(phen-NH2)2+) on their surface through diazotization and denitrogenation processes. In view of this, we carry out investigations on the Ru(bpy)2(phen-NH2)2+-modified CNTs regarding the origin of the photoactivity with the STM/STS techniques. The energy gap (Eg) between the conduction band and the valence bands of the host CNTs are functions of power of the incident light and the size of the modifier. The gap decreases with the power of the light, but increases with the size of the modifier as exposed to photo illumination at 473 nm. Nevertheless, the photomagnetism increases in amplitude with the size of the nano modifier.

    目錄 I 圖目錄 III 表目錄 VII 中文摘要 1 英文摘要 2 第一章 緒論 3 1-1奈米碳管發展與應用 3 1-2 釕金屬錯合物發展與應用 5 1-3掃瞄穿隧顯微鏡與掃描穿隧能譜 7 1-4 原子力顯微鏡 12 1-5研究動機 15 第二章 實驗與步驟 16 2-1 儀器設備 16 2-2 化學藥品 18 2-3 [Ru(bpy)2(NH2-phen)]2+ 之合成製備 19 2-4 [Ru(bpy)2(NH2-phen)]2+修飾碳管製備 20 2-5樣品製備 21 2-6 STM形貌掃瞄與STS量測步驟 22 2-7 AFM形貌掃描與MFM量測步驟 24 2-8 光源與功率調整 26 第三章 實驗結果與討論 27 3-1 [Ru(bpy)2(NH2-phen)]2+ 基本性質 27 3-2 HOPG光電性質探討 31 3-3 MWCNT 光電性質探討 34 3-4 Ru@CNT光電性質探討 37 3-5不同尺寸釕顆粒修飾物光電探討 40 3-6不同功率對釕顆粒修飾物光電探討 44 3-7 Ru@MWCNT光磁性質探討 46 第四章 結論 54 第五章 未來展望 55 第六章 參考文獻 56

    [1]五南圖書出版股份有限公司,奈米碳管,2004。
    [2] S. Iijima, Nature 1991, 354, 56.
    [3] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 1993, 363, 605.
    [4] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Chem. Phys. Lett. 2000, 316, 13.
    [5] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Chem. Phys. Lett. 1999, 299, 97.
    [6] Y. H. Yang, W. Z. Li, Appl. Phys. Lett. 2011, 98, 041901.
    [7] J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer, Science 2000, 289, 1730.
    [8] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 1992, 68, 631.
    [9] S. Berber, Y. K. Kwon, D. Tománek, Phys. Rev. Lett. 2000, 84, 4613.
    [10] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 1997, 386, 377.
    [11] [11] [11] [11] X. Gui, Z. Zeng, Z. Lin, Q. Gan, R. Xiang, Y. Zhu, A. Cao, Z. Tang, ACS. Appl. Mater. Interfaces 2013, 5, 5845. [12] D. V. Jawale, E. Gravel, C. Boudet, N. Shah, V. Geertsen, H. Li, I. N. N. Namboothiri, E. Doris, Chem. Com. 2015, 51, 1739. [13] J. Zhang, C. Wang, C. Zhou, ACS Nano 2012, 6, 7412.
    [14] F. H. Burstall, J. Chem. Soc. 1936, 173.
    [15] N. E. Tokel, A. J. Bard, J. Am. Chem. Soc. 1972, 94, 2862.
    [16] C. D. Ellis, L. D. Margerum, R. W. Murray, T. J. Meyer, Inorg. Chem.
    57
    1983, 22, 1283.
    [17] B. Reuillard, A. Le Goff, S. Cosnier, Anal. Chem. 2014, 86, 4409.
    [18] G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Appl. Phys. Lett. 1982, 40, 178.
    [19] G. Binnig, H. Rohrer, Surf. Sci. 1983, 126, 236.
    [20] D. M. Eigler, E. K. Schweizer, Nature 1990, 344, 524.
    [21] M. Morgenstern, CFN Lectures on Functional Nanostructures - Volume 2: Nanoelectronics, Springer Berlin Heidelberg, 2011, 87.
    [22] H. Lu, I. Kwak, J. H. Park, K. O’Neill, T. Furuyama, N. Kobayashi, A. Seabaugh, A. Kummel, S. K. Fullerton-Shirey, J. Phys. Chem. C 2015, 119, 21992.
    [23] L. Wang, Q. Chen, G. B. Pan, L. J. Wan, S. Zhang, X. Zhan, B. H. Northrop, P. J. Stang, J. Am. Chem. Soc. 2008, 130, 13433.
    [24] R. Timm, H. Eisele, A. Lenz, L. Ivanova, V. Vossebürger, T. Warming, D. Bimberg, I. Farrer, D. A. Ritchie, M. Dähne, Nano Lett. 2010, 10, 3972.
    [25] G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56, 930.
    [26] W. S. Lin, Y. H. Han, T. Y. Chang, C. M. Wang, C. H. T. Chang, J. S. Tsay, J. Phys. Chem. C 2015, 119, 20673. [27] K. Kusunoki, I. Sakata, K. Miyamura, Anal. Sci. 2002, 17, il267.
    [28] C. H. Olk, J. P. Heremans, J. Mater. Res. 1994, 2, 259.
    [29] 林子晶,國立臺灣師範大學化學研究所碩士論文,奈米碳管光磁性研究與探討,2015。

    下載圖示
    QR CODE