簡易檢索 / 詳目顯示

研究生: 劉玟均
Wen-Chun Liu
論文名稱: SOI晶片應用於具矽奈米線之微型熱電致冷晶片的研製
Development of micro thermoelectric cooler chip with silicon nanowires using SOI substrate
指導教授: 楊啟榮
Yang, Chii-Rong
黃茂榕
Huang, Mao-Jung
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 130
中文關鍵詞: 熱電材料金屬輔助化學蝕刻矽奈米線陣列微型熱電致冷元件
英文關鍵詞: thermoelectric materials, metal-assisted chemical etching (MAE), silicon nanowires (SiNWs), micro thermoelectric cooling (uTEC)device
論文種類: 學術論文
相關次數: 點閱:213下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以熱電材料所製作之主動式致冷晶片,具有體積小、低成本、無污染、高壽命及易整合於IC元件等優點,已成為目前各式散熱研究中所重視的議題。然而,傳統的熱電散熱技術面臨了不易微小化與整合化的缺點,又面臨高密度積體電路所需之高散熱需求的挑戰,已無法負荷未來電子元件的散熱需求。因此,本研究期望以金屬輔助化學蝕刻之矽奈米線陣列做為熱電材料,配合半導體相關製程製作微型致冷晶片,以此簡易、低成本且無汙染之製程技術,實現以奈米結構來降低熱傳導率進而提升熱電優值,以改善傳統熱電材料所遇到之瓶頸,達到改善微型熱電晶片致冷效率之目標。
    實驗結果顯示,以黃光微影製程與結合界面活性劑的濕式TMAH蝕刻技術,可成功於低阻值的n型(0.01-0.02 ohm-cm)與p型(0.001-0.005 ohm-cm)晶片表面,製作出凸角完整之平台微結構,此平台結構區域以金屬輔助化學蝕刻技術製作矽奈米線陣列結構,並測試出最佳的蝕刻參數。
    金屬輔助化學蝕刻具有可在室溫進行製程、無須通電、大面積製造,也不需要昂貴的儀器設備,以低成本之方式即可完成矽奈米線的製作。其中,n型矽以4.6 M氫氟酸和0.02 M硝酸銀的混合溶液,在蝕刻時間為20 分鐘後,矽奈米線長度約為5-6 um,直徑約為160-200 nm,深寬比約為30-31;p型矽的部分以4.6 M氫氟酸和0.017 M硝酸銀的混合溶液,在蝕刻時間15分鐘後,奈米線長度約為4-5 um,直徑約為50-100 nm,深寬比約為50-80。
    將凸塊平台結構圖案化後,為避免銀沉積太厚而覆蓋,導致氫氟酸無法順利將二氧化矽溶解,因此利用沉積銀金屬與蝕刻矽兩個階段分別進行的步驟,製作高深寬比之矽奈米線。第一階段為沉積銀金屬,皆以4.6 M氫氟酸和0.005 M硝酸銀,第二階段為蝕刻矽奈米線結構,n型矽以4.6 M氫氟酸和0.11 M雙氧水,50組p-n結構之沉積時間為1分鐘,蝕刻時間為 15 min,矽奈米線直徑約為80-150 nm,長度約為5-6 um,深寬比約為40-60;100組p-n結構之沉積時間為30秒,蝕刻時間為 15 min,矽奈米線直徑約為50-100 nm,長度約為7-8 um,深寬比約為80-140。蝕刻完後浸泡於10%的氫氟酸10-15分鐘,可去除矽奈米線外層之氧化物。完成n型與p型矽奈米線的製作後,期望日後能在SOI晶片上實現以矽奈米線作為熱電材料,製作高性能微型熱電致冷元件的目標。

    Active cooling chips fabricated from thermoelectric materials have the advantages of small size, low-cost, non-polluting, high life, and easily integrated into the IC components, etc., which have been received much attention on the issues of heat dissipation research. However, the conventional thermoelectric cooling technology is facing the drawbacks of difficult miniaturization and integration. Moreover, it also must face the high cooling challenges in high density integrated circuits, that the need of high heat dissipation has been unable to be satisfied. Therefore, it is expected in this study to use metal-assisted chemical etching (MAE) for fabricating silicon nanowires (SiNWs) array served as thermoelectric materials, which will be used to fabricate the micro thermoelectric cooling chips by integrating semiconductor-related processes. This novel process has the characteristics of simple, low-cost, and no pollution, which can realize nano-structures for lowering thermal conductivity and thus enhancing the figure of merit. Such SiNWs will have an aid in improving the encountered bottlenecks of conventional thermoelectric materials, and promote the efficiency of micro thermoelectric cooling chip.
    Experimental results show that the mesa arrays, with non-undercutting convex corners, have been successfully fabricated using low-resistance n-type (0.01-0.02 ohm-cm) and p-type (0.001-0.005 ohm-cm) silicon wafer by combining photolithographic process and TMAH-surfactant wet etching technique. Then the silicon nanowires were produced in the platform area of mesa by metal-assisted chemical etching (MAE) technique, and the optimal etching parameters also have been acquired. MAE has the advantages of room-temperature process, no electricity needed, large-area production, and no expensive equipment required, the silicon nanowires can be fabricated with such a low-cost process. The silicon nanowires were produced on n-type silicon with low resistance under 4.6 M HF and 0.02 M AgNO3 solution for etching 20 min, their length and diameter are about 5-6 um and 160-200 nm, respectively, the ratio of depth to width ratio is about 30-31; similarly, the silicon nanowires were produced on p-type silicon with low resistance under 4.6 M HF and 0.017 M AgNO3 solution for etching 15 min, their length and diameter are about 4-5 um and 50-100 nm, respectively, the ratio of depth to width ratio is about 50-80.
    As long as the structures of salient platform have been patterned, the excessive thickness of deposited silver will cover the surface of specimen, and make silicon dioxide not be dissolved in HF solution. Therefore, a two-step process, first depositing silver metal and then etching silicon, was used to produce high-aspect-ratio SiNWs. At first period, a 4.6 M HF and 0.005 M AgNO3 mixed solution was used to deposit silver metal; at second period, a 4.6 M HF and 0.11 M H2O2 mixed solution was used to etch SiNWs. The SiNWs with a diameter of about 80-150 nm, a length of about 5-6 um, a depth to width ratio of about 40-60 have been produced under n-type silicon with low-resistance, 50 pairs of p-n thermoelectric structure, silver deposition time of 1 min, and etching time of 15 min. Similarly, the SiNWs with a diameter of about 50-100 nm, a length of about 7-8 um, a depth to width ratio of about 80-140 also have been produced under n-type silicon with low-resistance, 100 pairs of p-n thermoelectric structure, silver deposition time of 30 sec, and etching time of 15 min. SiNWs must be immersed in 10% diluted HF for 10-15 min, it is necessary to remove the silicon oxide layer formed on the periphery of SiNWs. Once completing the n-type and p-type SiNWs, it is expected that micro thermoelectric cooling (uTEC) device can be fabricated using SOI substrate in the future. The SiNWs served as thermoelectric materials will significantly promote the thermoelectric performance of uTECs, and increase their application potentials.

    摘要 I Abstract III 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 微機電系統簡介 3 1.3 熱電原理與材料簡介 5 1.4 奈米結構熱電材料簡介 12 1.5 微致冷器技術簡介與應用發展 14 1.6 研究動機與目的 19 1.7 論文架構 20 第二章 理論探討與文獻回顧 21 2.1 矽奈米線之製備與發展 21 2.1.1 氣-液-固成長機制(VLS) 21 2.1.2 金屬輔助化學蝕刻法(MAE) 24 2.2 熱電效應(Thermoelectric effect)原理與熱電優值 41 2.2.1 席貝克效應 (Seebeck effect) 41 2.2.2 帕耳帖效應 (Peltier effect) 42 2.2.3 湯姆生效應 (Thomson effect) 43 2.2.4 熱電優值 (Figure of merit, ZT) 44 2.2.5 能源轉換效率 (Coefficient of performance, COP) 46 2.3 熱電特性之熱傳導量測 50 2.3.1 熱擴散法 51 2.3.2 熱傳導法 52 2.3.3 三倍頻法 53 2.4 矽奈米線之熱電研究 56 第三章 實驗設計與規劃 65 3.1 實驗設計 65 3.2 實驗規劃 73 3.3 實驗流程 74 3.4 實驗設備 80 第四章 實驗結果與討論 86 4.1 凸塊平台微結構之製作 86 4.2 矽奈米線之製作與形貌的探討 90 4.2.1 蝕刻溶液參數與矽奈米線之表面形貌 90 4.2.2 兩階段式蝕刻矽奈米線陣列之參數探討 101 4.3 圖案化之矽奈米線陣列結構製作 107 4.4 矽奈米線表面氧化物成分分析 111 第五章 結論與未來展望 119 5.1 結論 119 5.2 未來展望 120 參考文獻 122

    1. http://en.wikipedia.org/wiki/Moore's_law
    2. http://www.docstoc.com/docs/127824913/intel-chips
    3. 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, (2003), 142.
    4. M. V. Vedernikov and E. K. Jordanishvili, "A. F. Ioffe and origin of modern semiconductor thermoelectric energy conversion", IEEE, 17th International Conference, on Thermoelectric, (1998).
    5. H. J. Goldsmd, B.Sc., and R. W. Douglas, B.Sc., F S G T., F Inst.P., Research Laboratories, "The use of semiconductors in thermoelectric refrigeration", Br. J. Appl. Phys., 5, (1954), 386-390.
    6. http://electronics-cooling.com/
    7. 朱旭山, "熱電材料與元件之發展與應用", 工業材料雜誌, 220 期, (2005), 93-103.
    8. D. J. Yao, C. J. Kim, G. Chen, J. L. Liu, K. L. Wang, J. Snyder and J. P. Fleurial, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, (2001).
    9. 朱旭山, "熱電材料與元件之原理與應用",電子與材料雜誌, 22期, (2004), 78-89.
    10. B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure and A. T. Hunter, "Coherent singlet-triplet oscillations in a silicon-based double quantum dot", Nature , 481, (2012), 344-347.
    11. L. J. Bie, X. N. Yan, J. Yin, Y. Q. Duan, Z. H. Yuan, "Nanopillar ZnO gas sensor for hydrogen and ethanol", Sensors and Actuators B, 126, (2007), 604-608.
    12. L. Hu, L. Wu, M. Liao, X. Fang, "High-Performance nico2o4 nanofilm photodetectors fabricated by an Interfacial self-Assembly Strategy", Adv. Mater, 23, (2011), 1988-1992.
    13. L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B, 47, 19, (1993), 12727-12731.
    14. L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor", Phys. Rev. B, 47, 24, (1993), 16631-16634.
    15. L. D. Hicks, T. C. Harman, X. Sun and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit", Phys. Rev. B, 53, 16, (1996), R10493-R10496.
    16. I. H. Kim, "(Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators", Mater. Lett., 43, 5/6, (2000), 221-224.
    17. R. Yang, G. Chen, M. S. Dresselhaus, "Thermal conduc-tivity of simple nd tubular nanowire composites in the longitudinal direction", Phys. Rev. B, 72, 12, (2005), 125418-1-7.
    18. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Loang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires", Nature, 451, 7175, (2008), 163-167.
    19. Joonho Bae, Hyunjin Kim, Xiao-Mei Zhang, Cuong H Dang, Yue Zhang, Young Jin Choi, Arto Nurmikko and Zhong Lin Wang, "Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters", Nanotechnology, 21,(2010), 095502-095507.
    20. X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, S. T. Lee, " High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification", Angew. Chem. Int. Ed., 50, 42, (2011), 9861-9865.
    21. S. Perrauda, S. Poncet , S. Noe¨l, M. Levis, P. Faucherand, E. Rouvie`re, P. Thony, C. Jaussaud, R. Delsol, "Full process for integrating silicon nanowire arrays into solar cells", Sol. Energy Mater. Sol. Cells, 93, (2009), 1568-1571.
    22. E. Garnett and P. Yang, "Light trapping in silicon nanowire solar cells", Nano Lett., 10, (2010), 1082-1087.
    23. K. Peng, X. Wang, and S. T. Lee, "Silicon nanowire array photoelectrochemical solar cells", Appl. Phys. Lett.,92,(2008), 163103.
    24. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee. J. Zhu, "Aligned single-crystalline Si nanowire arrays for photovoltaic applications", Small, 1, 11, (2005), 1062-1067.
    25. Erik C. Garnett and Peidong Yang, "Silicon Nanowire Radial p-n Junction Solar Cells", J. Am. Chem. Soc., 130, 29, (2008), 9224-9225.
    26. T. Markussen, A. P. Jauho and M. Brandbyge, "Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties", Phys. Rev. B, 79, (2009), 035415-235422.
    27. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, "High-performance lithium battery anodes using silicon nanowires", Nature Nanotechnol., 3, (2008), 31-35.
    28. A. Majumdar, "Thermoelectricity in semiconductor nanostructures" Science, 303, 5659, (2004), 777-778.
    29. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III and J. R. Heath, "Silicon nanowires as efficient thermoelectric materials", Nature, 451, 7175, (2008), 168-171.
    30. J. Tang, H. T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell and Peidong Yang, "Holey silicon as an efficient thermoelectric material", Nano Lett., 10, 10, (2010), 4279-4283.
    31. R. Venkatasubramanian, E. Siivola, T. Colpitts & B. O’Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, 413, 6856, (2001), 597-602.
    32. S. Wu, J. Mai, Y. C. Tai, and C. M. Hod, "Micro heat exchanger by using MEMS impinging jets",12th Ann. IEEE Int. Workshop on MEMS, Orlando, FL, USA, (1999), 171-176.
    33. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, and K. E. Goodson, "Modeling of two-phase microchannel heat sinks for VISI chips", in Proc. 14th Ann. IEEE Int. MEMS-01 Conf., Interlaken, Switzerland, (2001), 422-426.
    34. C. H. Amon, J. Murthy, S. C. Yao, S. Narnmanchi, C. F. Wu, and C. C. Hsieh, "MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics", Exp. Therm. Fluid Sci., 25, (2001), 231-242.
    35. M.E.H Tijani, J.C.H Zeegers, A.T.A.M de Waele, "Design of thermoacoustic refrigerators", Cryogenics, 42, 1, (2002), 49-57.
    36. H. S. Choi, S. Yun and K. Whang, "Development of a temperature-controlled car-seat system utilizing thermoelectric device", Appl. Therm. Eng., (2007), 2841-2849.
    37. J. Kim, and E. Golliher, "Steady State Model of a Micro Loop Heat Pipe", IEEE, (2002), 137-144.
    38. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, and Dave Wolf, "Testing of a controller for a hybrid capillary pumped loop thermal control system", IEEE, (1989), 69-74.
    39. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, and J. L. Schanen, "Thermal analysis of thermal spreaders used in power electics cooling", IEEE, 1, (2002), 216-221.
    40. http://www.tec-microsystems.com/EN/Home.html
    41. 朱旭山, "熱電發電技術及應用方向", 工業材料雜誌, 286期, (2010), 119-130.
    42. 朱旭山, "熱電技術於車輛廢熱回收及致冷空調之研發與應用", 工業材料雜誌, 310期, (2012), 112-122.
    43. R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett., 4, 5, (1964), 89-90.
    44. Yiying Wu and Peidong Yang, "Direct Observation of Vapor-liquid-solid nanowire growth", J. Am. Chem. Soc., 123, (2001),3165-3166.
    45. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, "Controlled growth of ZnO nanowires and their optical properties", Adv. Funct. Mater. 12, (2002),323-331.
    46. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi and S. Q. Feng, "Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism", Chem. Phys. Lett., 323, (2000), 224-228.
    47. Y. Wang, V. Schmidt, S. senz and U. Gösele, "Epitaxial growth of silicon nanowires using an aluminium catalyst", Nat. Nanotechnol., 1, (2006), 186-189.
    48. R. Q. Zhang, Y. Lifshitz and S. T. Lee, "Oxide‐assisted growth of semiconducting nanowires", Adv. Mater., 15, (2003), 635-640.
    49. S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang and S. Fan, "Orientation-controlled growth of single-crystal silicon-nanowire arrays", Adv. Mater. 17, (2005), 56-61.
    50. H. J. Fan, P. Werner and M. Zacharias, "Semiconductor nanowires: from self-organization to patterned growth", Small , 2 , 6, (2006), 700-717.
    51. I. Lombardi, A. I. Hochbaum, P. Yang, C. Carraro and R. Maboudian, "Synthesis of high density, size-controlled Si nanowire arrays via porous anodic alumina mask", Chem. Mater., 18, 4, (2006), 988-991.
    52. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles", Adv. Funct. Mater., 16, (2006), 387-394.
    53. D D. Malinovska, M. S. Vassileva, N. Tzenov, M. Kamenova, "Preparation of thin porous silicon layers by stain etching", Thin Solid Films, 297, (1997), 9-12.
    54. X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon", Appl. Phys. Lett., 77, (2000), 2572-2574.
    55. K. Peng, H. Fang, J. Hu, Y. Wu, J. Zhu, Y. Yan and S. T. Lee, "Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution", Chem. Eur. J., 12, (2006), 7942-7947.
    56. T. Qiu, X.L. Wu, G.G. Siu and P. K. Chu, "Intergrowth mechanism of silicon nanowires and silver dendrites", J. Electron. Mater., 35, 10, (2006), 1879-1884.
    57. M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching", J. Phys. Chem., 112, (2008), 4444-4450.
    58. C. Y. Chen, C. S. Wu, C. J. Chou and T. J. Yen, "Morphological control of single-crystalline silicon nanowire arrays near room temperature", Adv. Mater., 20, (2008), 3811-3815.
    59. L. Lin, S. Guo, X. Sun, J. Feng and Y. Wang, "Synthesis and photoluminescence properties of porous silicon nanowire arrays", Nanoscale Res. Lett., 5, (2010), 1822-1828.
    60. Y. Kobayashi and S. Adachi, "Properties of Si nanowires synthesized by galvanic cell reaction", Jpn. J. Appl. Phys., 49, (2010), 075002.
    61. S. L. Wu, T. Zhang, R. T. Zheng, G. A. Cheng, "Facile morphological control of single-crystalline silicon nanowires", Appl. Surf. Sci., 258, (2012), 9792-9799.
    62. Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo and Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration", Nanoscale Research Letters, 7, 663, (2012)
    63. A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin, C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching", Curr. Appl. Phys., 13, (2013),717-724.
    64. A. M. Morales and C. M. Lieber, " A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science, 279, (1998), 208-211.
    65. Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching", Nano Lett., 8, 9, (2008), 3046-3051.
    66. Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer, and U. Gösele, "Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions", Nano Lett., 9, 7, (2009), 2519-2525.
    67. Z. Huang, H. Fang, and J. Zhu, " Fabrication of silicon nanowire arrays with controlled diameter, length, and density", Adv. Mater., 19, (2007), 744-748.
    68. D. M. Rowe, "Thermoelectrics handbook macro to nano", (2006).
    69. https://thermalhub.org/
    70. J. Zhang, H. Tong, G. Liu, J. A. Herbsommer, G. S. Huang, and N. Tansu, "Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents", J. Electron. Mater., 109, (2011), 053706.
    71. Y. Zhang, M. S. Dresselhaus, Y. Shi, Z. Ren, and G. Chen, "High Thermoelectric Figure-of-Merit in Kondo Insulator Nanowires at Low Temperatures", Nano Lett., 11, (2011). 1166-1170.
    72. http://en.wikipedia.org/wiki/Coefficient_of_performance
    73. 劉君愷, "熱電技術發展現況", 材料世界網, (2009), http://www.materialsnet.com.tw/DocView.aspx?id=8191
    74. 簡恆傑, "微尺度薄膜熱傳導性能量測方法", 工業材料雜誌, 第247期, (2007), 95-105.
    75. A. J. Ångström, "Neue methode, das wärmeleitungsvermögen der körper zu bestimmen", Ann. Phys., 114, (1861), 513-530.
    76. E. Jansen, and E. Obermeier, "Thermal conductivity measurements on thin films based on micromechanical devices", J. Micromech. Microeng., 6, (1996), 118-121.
    77. O. W. Käding, H. Shurk, and K. E. Goodson, "Thermal conduction in metallized silicon-dioxide layers on silicon", Appl, Phys. Lett., 65, (1994), 1629-1631.
    78. D. G. Cahill, "Thermal conductivity measurements from 30K-750K: The 3 omega method", Rev. Sci. Instrum., 61, (1990), 802-808.
    79. L. H. Liang and B. Li, "Size-dependent thermal conductivity of nanoscale semiconducting systems", Phys. Rev B, 73, (2006), 153303.
    80. L. Weber and E. Gmelin, "Transport properties of silicon", Appl. Phys. A, 53, (1991), 136-140.
    81. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang and A. Majumdar, "Thermal conductivity of individual silicon nanowires", Appl. Phys. Lett., 83, (2003) 2934-2936.
    82. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens, "Thermal Conductivity: Metallic Elements and Alloys", Thermophysical Properties of Matter, 1, (1970), 339.
    83. D. G. Cahill, S. K. Watson, and R. O. Pohl, "Lower limit to the thermal conductivity of disordered crystals", Phys. Rev. B, 46, (1992), 6131-6140.
    84. T. M. V. Trinh, J. W. Andrew, L. Vincenzo and G. Giulia, "Atomistic design of thermoelectric properties of silicon nanowires", Nano Lett., 8, 4, (2008), 1111-1114.
    85. N. Yang, G. Zhang, and B. Li, "Ultralow thermal conductivity of isotope-doped silicon nanowires", Nano Lett., 8, 1, (2008), 276-280.
    86. L. Shi, D. Yao, G. Zhang, and B. Li, "Size dependent thermoelectric properties of silicon nanowires", Appl. Phys. Lett., 95, (2009), 063102.
    87. Y. Li, K. Buddharaju, N. Singh, G. Q. Lo, and S. J. Lee, "Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology", Electron Device Letters, IEEE, 32, 5, (2011), 674-676.

    下載圖示
    QR CODE