簡易檢索 / 詳目顯示

研究生: 吳宗陽
Wu, Tsung-Yang
論文名稱: 使用數位增強型架構的二階三角積分調變器搭配多位元逐次逼近式量化器
A 2nd-order ΔΣ Modulator Using Digital-Enhanced Architecture and Multi-bit SAR-assist Quantizer
指導教授: 郭建宏
Kuo, Chien-Hung
口試委員: 郭建宏
Kuo, Chien-Hung
陳建中
Chen, Jiann-Jong
黃育賢
Hwang, Yuh-Shyan
口試日期: 2025/01/03
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 55
中文關鍵詞: 數位增強型架構ΔΣ調變器摺疊疊接轉導放大器自給式偏壓轉導放大器逐次逼近暫存式量化器弱反轉區
英文關鍵詞: Digital-enhanced architecture, ∆Σ modulator, folded-cascode OTA, self-biased OTA, successive approximation register (SAR) quantizer, weak inversion region
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500247
論文種類: 學術論文
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了一種使用數位增強型架構的二階ΔΣ調變器搭載多位元循序漸進式量化器。與傳統的CIFF相比,這種新架構不需要在量化器前端增加類比加法器,因此比較器前的輸入擺幅變小,降低諧波失真,同時減少加法器電路的功耗。此外,傳統的數位前饋模型會因前饋量化器而引入額外的量化雜訊,造成訊號量化雜訊比顯著降低,本研究以增加(1-z-1)/K來消除這些額外的量化雜訊,並維持數位前饋原有的優點。
    為了速度與輸出擺幅的考量,第一級積分器使用摺疊疊接轉導放大器(folded-cascode OTA),其輸入級操作在弱反轉區,如此能降低輸入參考雜訊(input-referred noise)。第二級積分器的輸出擺幅極小,放大器規格較為寬鬆,因此使用自給式偏壓轉導放大器(self-biased OTA)。該電路採用TSMC 0.18-um 1P6M CMOS製程技術。晶片核心面積為0.419mm2,在5.25 MHz取樣頻率和20 kHz頻寬下,最佳效能SNDR為83.67 dB,ENOB為13.61-bit。在使用1.4V供應電壓下功率消耗為528.9 μW,效能指標FoMSNDR達到159.4 dB。

    This thesis presents a second-order ∆Σ modulator using digital-enhanced architecture and multi-bit SAR-assist quantizer. Compared to the traditional cascade integrators with distributed feedforward (CIFF) structure, this new architecture does not require an analog adder at the front end of the quantizer, which reduces the input swing before the comparator, thereby lowering harmonic distortion and reducing the power consumption of the adder circuit. Furthermore, traditional digital feedforward delta-sigma modulators suffer from additional quantization noise due to the feedforward quantizer, significantly reducing SQNR. This study compensates for the additional quantization noise by incorporating (1-z-1)/K while maintaining the original advantages of digital feedforward.
    In order to consider speed and output swing, the first-stage integrator employs a folded-cascode OTA with its input stage operating in the weak inversion region, thereby reducing input-referred noise. Since the second-stage integrator has a minimal output swing, and the OTA specifications are relatively loose, so a self-biased OTA is employed. The circuit is implemented using the TSMC 0.18-μm 1P6M CMOS process. Its core area is 0.419 mm², achieving a peak SNDR of 83.67 dB and an ENOB of 13.61-bit at a 5.25 MHz sampling frequency and 20 kHz bandwidth. Under a 1.4V supply voltage, the power consumption is 528.9 μW, yielding a FoMSNDR of 159.4 dB.

    誌   謝 i 摘   要 iii ABSTRACT iv 目   錄 v 表 目 錄 viii 圖 目  錄 ix 第一章  類比數位轉換器概論 1 1.1  研究動機與背景 1 1.2  類比數位轉換器簡介 2 1.2.1  抗混疊濾波器與取樣保持電路 3 1.2.2  MID-RISE量化器 4 1.2.3  量化雜訊的隨機分析 5 1.3  性能指標 7 1.3.1  訊號量化雜訊比 7 1.3.2  訊號雜訊比 8 1.3.3  訊號雜訊失真比 8 1.3.4  有效位元數(解析度) 9 1.3.5  動態範圍 9 1.3.6  無雜散動態範圍 10 1.3.7  總諧波失真 10 1.3.8  品質因素 11 第二章  ΔΣ調變器的原理與數位增強型架構分析 12 2.1  超取樣 12 2.2  ΔΣ調變器簡介 15 2.2.1  雜訊整形技術 16 2.2.2  分佈式回饋級聯積分器 17 2.2.3  分佈式前饋級聯積分器 19 2.3  數位前饋相關架構分析 21 2.3.1  傳統數位前饋架構 21 2.3.2  改良版數位增強型架構 23 2.4  結論 28 第三章  電路層次的設計考量與模擬 29 3.1  描述電路行為的架構說明 29 3.2  電路非理想效應 31 3.2.1  熱雜訊 31 3.2.2  取樣抖動 32 3.2.3  OTA之有限直流增益 33 3.3  循序漸進式量化器 34 3.4  運算放大器 36 3.4.1  摺疊疊接轉導放大器 36 3.4.2  自給式偏壓轉導放大器 37 3.5  整體電路架構 38 3.6  模擬結果 42 第四章  佈局與量測 44 4.1  晶片佈局 44 4.2  印刷電路板佈局 45 4.3  晶片量測環境 46 4.4  量測結果 47 第五章  總結與未來展望 50 5.1  總結 50 5.2  未來展望 51 參 考 文 獻 52 自     傳 55 學 術 成 就 55

    [1] B. Murmann, "ADC Performance Survey 1997-2024," [Online]. Available: https://github.com/bmurmann/ADC-survey.
    [2] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition. Wiley, IEEE Press, 2008.
    [3] S. Pavan, R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Converters, 2nd Edition. John Wiley & Sons, Inc. 2017.
    [4] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.
    [5] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996.
    [6] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd Edition. McGraw-Hill Inc., 2000.
    [7] X. Tang et al., "A 13.5-ENOB, 107-μW Noise-Shaping SAR ADC with PVT-Robust Closed-Loop Dynamic Amplifier," IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
    [8] M. Honarparvar, J. M. de la Rosa and M. Sawan, "A 0.9-V 100- μ W Feedforward Adder-Less Inverter-Based MASH ΔΣ Modulator with 91-dB Dynamic Range and 20-kHz Bandwidth," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675-3687, Nov. 2018.
    [9] A. Gharbiya and D. A. Johns, "Fully digital feedforward delta-sigma modulator," Research in Microelectronics and Electronics, 2005 PhD, Lausanne, Switzerland, 2005, pp. 97-100 vol.1.
    [10] A. A. Hamoui, M. Sukhon and F. Maloberti, "Digitally-enhanced high-order ΔΣ modulators," 2008 15th IEEE International Conference on Electronics, Circuits and Systems, Saint Julian's, Malta, 2008, pp. 1115-1118.
    [11] J. -H. Han, K. -I. Cho, H. -J. Kim, J. -H. Boo, J. S. Kim and G. -C. Ahn, "A 96dB Dynamic Range 2kHz Bandwidth 2nd Order Delta-Sigma Modulator Using Modified Feed-Forward Architecture with Delayed Feedback," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 68, no. 5, pp. 1645-1649, May 2021.
    [12] D. J. Comer and D. T. Comer, "Using the weak inversion region to optimize input stage design of CMOS op amps," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 51, no. 1, pp. 8-14, Jan. 2004.
    [13] M. Maruyama, S. Taguchi, M. Yamanoue and K. Iizuka, "An Analog Front-End for a Multifunction Sensor Employing a Weak-Inversion Biasing Technique with 26 nVrms, 25 aCrms, and 19 fArms Input-Referred Noise," IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2252-2261, Oct. 2016.
    [14] M. Bazes, "Two novel fully complementary self-biased CMOS differential amplifiers," IEEE J. Solid-State Circuits, vol. 26, no. 2, pp. 165-168, Feb. 1991.
    [15] H. Ghaedrahmati, J. Zhou and R. B. Staszewski, "A 38.6-fJ/Conv.-Step Inverter-Based Continuous-Time Bandpass ΔΣ ADC in 28 nm Using Asynchronous SAR Quantizer," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 68, no. 9, pp. 3113-3117, Sept. 2021.
    [16] J. -S. Huang, S. -C. Kuo and C. -H. Chen, "A Multistep Multistage Fifth-Order Incremental Delta Sigma Analog-to-Digital Converter for Sensor Interfaces," IEEE J. Solid-State Circuits, vol. 58, no. 10, pp. 2733-2744, Oct. 2023.
    [17] R. Garvi, J. Granizo, E. Gutierrez, V. Medina, A. Wiesbauer and L. Hernandez, "A VCO-ADC Linearized by a Capacitive Frequency-to-Current Converter," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 70, no. 6, pp. 1841-1845, June 2023.
    [18] L. Meng et al., "A 1.2-V 2.87-μW 94.0-dB SNDR Discrete-Time 2–0 MASH Delta-Sigma ADC," IEEE J. Solid-State Circuits, vol. 58, no. 6, pp. 1636-1645, June 2023.
    [19] W. A. Qureshi, A. Salimath, E. Botti, F. Maloberti and E. Bonizzoni, "An Incremental-ΔΣ ADC with 106-dB DR for Reconfigurable Class-D Audio Amplifiers," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 69, no. 3, pp. 929-933, March 2022.
    [20] L. Lv, X. Zhou, Z. Qiao and Q. Li, "Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V ΔΣ -Modulators," IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.

    下載圖示
    QR CODE