研究生: |
劉亞樵 Liu, Ya-Chiao |
---|---|
論文名稱: |
電阻式氣體感測器控制電路開發之研究 Research on the Development of Control Circuits for Resistive Gas Sensors |
指導教授: |
郭金國
Kuo, Chin-Guo |
口試委員: | 郭金國 陳蓉萱 許春耀 |
口試日期: | 2021/01/29 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 電阻式氣體感測元件 、控制電路 、甲醛 |
英文關鍵詞: | Resistance gas sensor, Control circuit, Formaldehyde |
DOI URL: | http://doi.org/10.6345/NTNU202100418 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於製作可因應各類電阻式氣體感測元件 (resisting gas sensor) 的控制電路,實驗中將使用二氧化鈦 (TiO2) 奈米管製作甲醛 (HCHO) 氣體感測元件,為因應使用各類電阻式氣體感測元件的需求,控制電路需包含分壓電路定電阻切換功能,並設計對應之操作介面 (User Interface) 及控制程式。本研究將以陽極氧化法製作多孔性陣列的二氧化鈦奈米管,並以熱處理方式使二氧化鈦達到銳鈦礦相 (Anatase),控制電路採用 16Bit 的類比數位轉換晶片 (Analog-to-Digital Converter) 及 MCU (Micro Controller Unit) 級別的微控制器,並於硬體層面設計分壓電路定電阻切換介面,撰寫對應之控制程式,控制程式整合了軟體操作介面之指令,可輸入不同氣體感測元件之參數,微控制器擷取來自類比數位轉換晶片的數位訊號後,將以遞推平均濾波法進行數位濾波 (Digital Filter) 處理,濾除不必要之雜訊,控制程式帶入甲醛氣體樣本濃度資料後即可計算出感測之甲醛氣體濃度,並進行20~80 ppm的甲醛氣體濃度感測,以驗證控制電路的可行性,從實驗結果可知本研究之電阻式氣體感測器控制電路可準確判定甲醛氣體濃度。
The purpose of this study is to make a control circuit which is applicable when attached to different resistive gas sensors. Titanium dioxide (TiO2) nanotube control will be used as formaldehyde (HCHO) gas sensor in the experiment. In response to the need of using various resistive gas sensors, the control circuit needs to include a voltage divider circuit with resistance that can altered according to different applications, along with corresponding user interface and control program. In this study, titanium dioxide nanotubes with porous arrays will be created through the process of anode oxidation, and by heating it to reach the acute anatase phase. The control circuit adopts a 16Bit analog-to-digital conversion chip and MCU (Micro Controller Unit)-level microcontroller. A resistive divider of variable resistance should be created in terms of hardware. Corresponding control program which integrates all software interface commands should be designed. Such program should allow the input of different gas sensors parameters. After the microcontroller detects the digital signal from the analog-digital conversion chip, digital filtering will be carried out using recursive average filtering to remove the impact of unnecessary noise. After the program records the signal data representing the formaldehyde gas sample concentration, the actual concentration can be calculated. The program can then construct a database which indicates the resistance and its corresponding formaldehyde gas concentration (90~100ppm). In future investigations, the circuit can detect the concentration of the formaldehyde gas sample presented, and by comparing the signal generated by the resistive gas sensor to find out the resistance. Hence, the feasibility of the control circuit can be verified by comparing the results to the values obtained with other resistive gas sensor circuits. It can be seen from the experimental results that the resistance gas sensor control circuit in this study can accurately determine the concentration of formaldehyde gas.
[1] 蔡嬪嬪,“氣體感測器的新動向-微機電元件產品開發”,工業材料,P92-95,第150期,1999。
[2] Health Effects Institute, State of Global Air Report. Boston, MA:Health Effects Institute, 2019.
[3] 掌上醫訊,世界衛生組織發布最新全球十大死因,取自https://kknews.cc/zh-tw/health/qnxna4o.html,2018。
[4] Matteo Carpentieri and Prashant Kumar and Alan Robinsb, “An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles Environmental Pollution,” vol.159, pp685-693, 2011.
[5] 每日頭條,您知道嗎?室內空氣污染比室外嚴重5-10倍,取自https://kknews.cc/health/8xllvjl.html,2017。
[6] 國家衛生研究院,2020健康國民白皮書,台北市:中華民國政府出版品,2009。
[7] 行政院環境保護署室內空氣品質資訊網,室內空氣品質標準,取自https://iaq.epa.gov.tw/indoorair/page/News_12_1.aspx,2012。
[8] 勞動部職業安全衛生署,甲醛中毒之認定標準,取自https://www.osha.
gov.tw/media/2825/e3fa614a86f621d240e3e200f1bcda00.pdf。
[9] Johan H. Huijsing, “Integrated smart sensor. Sensors and Actuators A,” Vol.30, pp.167-174, 1992.
[10] F.Udreaa and J.W.Gardnerb and D.Setiadia and J.A.Covingtonb and T.Dogarua and C.C.Lua and W.I.Milnea, “Design and Development of SOI MOSFET Micro Gas Sensors,” 科儀新知, Vol. 22, no. 5, pp.76-90, 2001.
[11] 黃國政、陳奕璇、楊青青、蕭文澤,“國內外空氣品質感測器現況介紹”,科儀新知,P4-11,第218期,2019。
[12] 蔡宗亨、曹育齊,“電容與電阻感測器與讀取電路系統整合設計”,科儀新知,P26-39,第212期, 2017。
[13] 蕭育仁、林威志、劉建惟、蕭文澤,“低耗能氣體感測器設計與製作方法”,科儀新知,P51-60,218期,2019。
[14] Yang Chi-Chih, “Development of a Personal Real-time Monitor for Gases and Vapors,” National Central University, Master's thesis, 2000.
[15] 李佩芸,“高靈敏可攜式甲醛氣體感測器之研發與應用”,中興大學化學系所,碩士論文,2014。
[16] 吳仁彰,“奈米材料應用於氣體感測器之發展”,科儀新知,P88 -94,143期,2004。
[17] 戴慶良、劉茂誠,“CMOS MEMS氣體感測器”,科儀新知,P54-61,165期,2004。
[18] 楊力儼、柯廷勳、曾文甲,“固態氣體感測器介紹”,科儀新知,P12-25,218期,2019。
[19] 伍維君,“高感度二氧化鈦氫氣感測器之製備及其感測特性研究”,成功大學化學工程學系,碩士論文,2019。
[20] Ying Xiao and Yafei Li and Fangfei Liu and Jianhua Liu andd Ruijun Zhang, “Journal of Materials Science and Engineering”, Vol.2, pp. 84-87, 2012.
[21] 台灣癌症防治網,甲醛與癌症的關係,取自http://web.tccf.org.tw/lib/
addon.php?act=post&id=2832。
[22] 葉育瑋,“以氧化鈦奈米管製備混相二氧化鈦光觸媒”, 臺灣大學化學研究所,碩士論文,2006。
[23] 吳仁彰、賴曉芳、鄭創元,“二氧化鈦奈米材料應用於甲醛氣體感測”,科儀新知,P63-72,198期,2019。
[24] S. Iijima, “Helical microtubules of graphitic carbon. Nature”, Vol.354, p56-58, 1911.
[25] R. Tenne and L. Margulis amd M. Genut and G. Hodes, “Polyhedral and cylindrical structures of tungsten disulphide”, Nature, Vol.360, p444-446, 1992.
[26] M. Adachi and Y. Murata and M. Harada and S. Yoshikawa, “Formation of titania nanotubes with high photo-catalytic activity”, Chemistry Letters. Vol.942, P942-943, 2000.
[27] M. Adachi and Y. Murata and I. Okada and Yoshikawa, “Formation of titania nanotubes and applications for dye-sensitized solar cells”, The Electrochemical Society. Vol.150, G488, 2003.
[28] T. Kasuga and M. Hiramatsu and A. Hoson and T. Sekino and K. Niihara, “ Formation of titanium oxide nanatube”, Langmuir, Vol.14, P3160, 1998.
[29] M. Zhang and Z.-S. Jin and J.-W. Zhang and X.-Y. Guo and J.-J. Yang and W. Li and X.-D. Wang and Z.-J. Zhang, “ Effect of annealing temperature on morphology”, J. Mol. Catal. Vol.217, P203, 2019.
[30] T. Kasugaz and M. Hiramatsu and A. Hoson and T. Sekino and K. Niihara, “Titania nanotubes prepared by chemical processing”, Adv. Mater, Vol.11 P1307, 1999.
[31] P. Hoyer, “Formation of a titanium dioxide nanotube array”, Langmuir, Vol.12 P141, 1966.
[32] D. Gong and C. A. Grimes and O. K. Varghese, “Titanium oxide nanotube arrays prepared by anodic”, oxidation. J. Mater. Res., Vol.16, P3331-3334, 2001.
[33] K. Iijima and M. Goto and S. Enomoto and H. Kunugita and K. Ema, M. Tsukamoto and N.Ichikawa and H. Sakama, “Influence of oxygen vacancies on optical properties of anatase TiO2 thin films”, J. Lumines, Vol.128, P911-913, 2008.
[34] Clifford A. Hampel, The Encyclopedia of the Chemical Elements. New York, 1968.
[35] 張昭賢,鈦電極工學,北京:冶金工業出版社,2003。
[36] Nie Xiliang and Zhuo Shuping and Maeng Gloria and Karl Sohlberg, “Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties,” International Journal of Photoenergy, Vol.3, P1248, 2009.
[37] S. A. Akbar and L. B. Younkman and P. K. Dutta, “Selectivity of an anatase TiO2-based gas sensor,” Polymers in sensors, Vol.690, P161-167, 1998.
[38] U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Vol.48, P53, 2003.
[39] H. Zhang and C. Xie and Y. Zhang and G. Liu and C. Liu and X. Ma and W. F. Zhang, “Effects of thermal treatment under different atmospheres on the spectroscopic properties of nanocrystalline TiO2,” J. Appl. Phys, Vol.103, P103-107, 2008.
[40] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design. Oxford. United Kingdom: Oxford University Press, 2011.
[41] Kester. Walt, The Data Conversion Handbook. Amsterdam, Netherlands: Elsevier, 2005.
[42] James D. Broesch, Digital Signal Processing: Instant Access. Newnes: Butterworth-Heinemann, 2008.
[43] Dick Pountain, The Penguin Concise Dictionary of Computing. London, United Kingdom: Penguin Books Ltd, 2004.
[44] 章亞明,嵌入式控制系統應用設計,北京:北京郵電大學出版社,2010。
[45] B. Venkataramani and M. Bhaskar, Digital Signal Processors: Architecture, Programming and Applications. New York: McGraw-Hill Education, 2002.
[46] Steven Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists. Amsterdam, Netherlands: Elsevier, 2013.
[47] Lizhe Tan and Jean Jiang, Digital Signal Processing: Fundamentals and Applications. Commonwealth of Massachusetts: Academic Press, 2013.
[48] 林翰江,“高效能逐次逼近式類比數位轉換器的設計與實現”, 國立臺灣師範大學電機學系,碩士論文,2013。
[49] 孫志祥,“微控制器產業的競合分析”,臺灣大學國際企業管理組,碩士論文,2006。
[50] 逸塵、艾倫,8051單晶片教學範本,台北市:金禾資訊股份有限公司,2003。
[51] 陳明熒,單晶片8051實作入門-最新版,台北市:文魁資訊股份有限公司,2003。
[52] 施慶隆、劉晏維,PIC18FXX2 微控制器原理與實作,台北市:宏友圖書開發股份有限公司,2004。
[53] 施慶隆,控制系統分析與設計,新北市:全華圖書,2003。
[54] V. Udayashankara, Microcontroller. New York: McGraw-Hill Education, 2009.
[55] IBM, POWER to the people. Retrieved from https://web.archive.org/web/
20130204034335/http://www.ibm.com/developerworks/power/library/pa-powerppl/, 2004.
[56] 江冠廷、黃寶強、徐碧生,“模糊理論應用於四旋翼機之懸停控制”,國立宜蘭大學工程學刊,P1-16,12期,2017。
[57] 黃泓傑,“多微控制器系統應用於編隊飛行資訊鍊通訊設計”,碩士論文,2018。
[58] National Semiconductor, PC16550D Universal Asynchronous Receiver/
Transmitter with FIFOs. Retrieved from https://web.archive.org/web/
20080613095627/http://www.national.com/ds/PC/PC16550D.pdf, 1995.
[59] Freebsd Tutorials, Serial and UART Tutorial. Retrieved from https://www.
freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/, 2014.
[60] Philips Semiconductors, I2C-bus specification and user manual. Retrieved from https://www.nxp.com/docs/en/user-guide/UM10204.pdf, 2014.
[61] David Kalinsky and Roee Kalinsky, Introduction to I2C. Retrieved from https://web.archive.org/web/20070926222250/ http://embedded.com
/story/OEG20010718S0073, 2007.
[62] Carl Fenger, The I2C Bus: From Theory to Practice. State of New Jersey: Wiley, 1997.
[63] Wikipedia維基百科,使用者介面,取自 https://zh.wikipedia.
org/wiki/%E7%94%A8%E6%88%B7%E7%95%8C%E9%9D%A2。
[64] Larry E. Wood, User Interface Design: Bridging the Gap from User Requirements to Design. State of Florida: CRC Press, 1997.
[65] Khalid Saeed and Nabendu Chaki and Bibudhendu Pati and Sambit Bakshi and Durga Prasad Mohapatra, Progress in Advanced Computing and Intelligent Engineering. Berlin, Germany: Springer, 2018.
[66] 孫志杰,“應用數位濾波器組技術於DSP晶片建構聽障人士之耳蝸聽覺機制之研究”, 臺灣大學工程科學及海洋工程學研究所,碩士論文,2008。
[67] Forester W. Isen, DSP for MATLAB and LabVIEW: Digital filter design. State of California: Morgan & Claypool Publishers, 2008.
[68] B. A. Shenoi, Introduction to Digital Signal Processing and Filter Design. State of New Jersey: John Wiley, 2005.
[69] 葉峒江,“適應性主動控制對窗戶不同面積平板聲輻射之研究”, 臺灣大學工程科學及海洋工程學研究所,碩士論文,2011。
[70] Wikipedia維基百科,電壓分配定則,取自 https://zh.wikipedia.
org/wiki/%E9%9B%BB%E5%A3%93%E5%88%86%E9%85%8D%E5%AE%9A%E5%89%87,2020。
[71] Paul, Clayton R, Fundamentals of Electric Circuit Analysis. State of New Jersey: John Wiley & Sons, 2001.
[72] Serway, Raymond A and Jewett, John W, Physics for Scientists and Engineers. Boston: Thomson Learning, 2004.
[73] Sengpielaudio, Calculations: voltage divider or potentiometer. Retrieved from http://www.sengpielaudio.com/calculator-voltagedivider.htm
[74] 林威諭,“螢光散射層應用於二氧化鈦奈米管染料敏化太陽能電池之研究”, 臺灣師範大學工業教育學系,碩士論文,2018。