簡易檢索 / 詳目顯示

研究生: 黃松勳
論文名稱: 以掃描式穿透顯微鏡研究NaxCoO2單晶表面(x = 0.84)
An STM Study of NaxCoO2 Surface(x = 0.84)
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 單晶掃描式穿透顯微鏡表面
英文關鍵詞: NaxCoO2
論文種類: 學術論文
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以掃描式探針顯微鏡(scanning tunneling microscopy, STM)研究NaxCoO2的表面結構,觀察濃度x = 0.84之單晶樣品,在超高真空系統中剝離出新的表面進而在STM下觀察其表面結構,在室溫下觀察到表面Na形成排列結構p(√7 x √7) hexagonal phase和p(3 x 3) kagome phase,以及p(2√3 x 2√3) pinwheel phase。同時也觀察到Na的排列結構隨著時間會有明顯的變化,如流體般與固態之間的漲落;並以觀察到的實驗結果進而建構以Na原子形成trimmer之模型來描述Na原子在表面的排列結構。我們也觀察到類一維的p(6 x 1)的條紋相(stripe phase),其結構週期在表面低能電子繞射(low energy electron diffraction, LEED)和在單晶X-ray Laue繞射中都被觀察到,說明了條紋相結構不僅存在表面上同時也存在整個單晶塊材之中。在STM下也觀察到三個方向條紋相的分佈邊界(domain boundary),以及Na排列相隨著條紋相之週期排列起伏的情況。在LEED實驗中,些微加熱或降低溫對於條紋相p(6 x 1)排列結構有增進的效果。但在低溫的STM實驗中,僅少數可觀察到kagome phase的Na排列,大部分觀察到的Na排列結構較室溫下所觀察的無序。

    We report the first direct real-space scanning tunneling microscopy (STM) study of NaxCoO2 surface (x = 0.84), as prepared by in-situ cleaving in ultra high vacuum. Two categories of ordering phenomena were discovered. First, three Na ordered patterns of Na0.84CoO2 surface, with p(√7 x √7), p(3 x 3), or p(2√3 x 2√3) unit cells, were resolved. These patterns are ascribed to Na ordering. Second, a new phase of one-dimensional stripe was identified. This stripe phase exists on the surface and in the bulk crystal. We also observed fluctuations of the Na ordered phases at room temperature. The ordering of the stripe phase can be slightly improved by slight annealing followed by cooling, as evidenced by low energy electron diffraction (LEED). However, preliminary low temperature STM (~100K) studies showed the Na is less ordered and only occasional small area of the kagome phase was observed.

    目錄 摘要……………………………………………………………………i Abstract……………………………………………………………ii 致謝…………………………………………………………………iii 目錄…………………………………………………………………iv 圖目錄………………………………………………………………vi 表目錄………………………………………………………………ix 1 序論..........................................1 1-1 Na xCoO2結構特性……………………………………………………1 1-2 Na xCoO2的Na排列(sodium ordering)…………………………8 1-3 超導性(superconductivity)....………………………………15 1-4 熱電性(thermoelectric)……………………………………..…17 1-5 NaxCoO2隨濃度變化之物理特性…………..................20 1-6 研究動機(motivation)………….....…………………….....22 2 實驗儀器架構與原理…………………………………...........23 2-1 超高真空系統(UHV system)…………………………..........23 2-2 掃描式探針顯微鏡(Scanning Probe Microscope, SPM)............................28 2-3 STM探針的製作(Etching Tip)……………………..…………..36 3 實驗………………………………………………………………....39 3-1 樣品製備………………………………………………….........39 3-2 NaxCoO2表面之觀察…………………………………………………41 3-3 NaxCoO2(x = 0.84)表面的熱穩定性……………………......45 3-4 變溫之低能量電子繞射(LEED)實驗(x = 0.84)........... 47 3-5 室溫下STM之表面Na原子排列結構觀察(x = 0.84)..........49 3-6 條紋相p(6 x 1)上的Na原子排列…………………………..…..55 3-7 低溫STM實驗(x = 0.84)….…………………...............58 3-8 表面長Na的校正(calibration of Na)………....…......61 4 結果與討論………………………………………………………....65 4-1 Na phases模型………………………………………….……...65 4-2 變動的Na排列結構………………………………………….…....69 4-3 條紋相(stripe phase) p(6 x 1)…………...……........71 4-4 變溫對於排列結構的影響………………………………....….74 5 結論………………………………………………………........75 參考文獻(Reference)….………………………………………..........76

    [1] J. Molenda, C. Delmas, and P. Hagenmuller, Solid State Ionics 10, 431 (1983).
    [2] M. G. S. R. Thomas, P. G. Bruce, and J. B. Goodenough, Solid State Ionics 17, 13 (1985).
    [3] Y. Ono, R. Ishikawa, Y. Miyazaki, Y. Ishii, Y. Morii, and T. Kajitani, J. Solid State Chem. 166, 177 (2002).
    [4] Viciu, L. Bos, J. W. G. Zandbergen, H. W. Huang, Q. Foo, M. L. Ishiwata, S. Ramirez, A. P. Lee, M. Ong, N. P.Cava, R. J. Phy. Rev. B, 73, 174104 (2006).
    [5] I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
    [6] Yayu Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Nature 423, 425 (2003).
    [7] Maw Lin Foo, Yayu Wang, Satoshi Watauchi, H. W. Zandbergen, Tao He, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 92, 247001 (2004).
    [8] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
    [9] G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).
    [10] Zandbergen, H. W. Foo, M. Xu, Q. Kumar, V. Cava, R. J. Phys. Rev. B 70, 024101 (2004).
    [11] Claude Fouassier, Guy Matejka, Jean-Maurice Reau, and Paul Hagenmuller, J. Solid State Chem. 6, 532 (1973).
    [12] Q. Huang, M. L. Foo, J. W. Lynn, B. H. Toby, R. A. Pascal, H. W. Zandbergen, and R. J. Cava, Phys. Rev. B 70, 184110 (2004).
    [13] J.D. Jorgensen, M. Avdeev, D.G. Hinks, J.C. Burley, and S. Short, Phys. Rev. B 68, 214517 (2003).
    [14] J. W. Lynn, Q. Huang, C. M. Brown, V. L. Miller, M.L. Foo, R.E. Schaak, C. Y. Jones,.E. A. Mackey, and R. J. Cava, Phys. Rev. B68, 214516 (2003).
    [15] Q. Huang, B. Khaykovich, F. C. Chou, J. H. Cho, J. W. Lynn, and Y. S. Lee, Phys. Rev. B 70, 134115 (2004).
    [16] R. Ray, A. Ghoshray, K. Ghoshray, and S. Nakamura, Phys. Rev. B 59, 9454 (1999).
    [17] J. W. Lynn, Q. Huang, R. J. Cava and Y. S. Lee, Mater. Res. Soc. Symp. Proc. 840, Q4.4.1 (2005).
    [18] R. E. Schaak, T. Klimczuk, M. L. Foo, and R. J. Cava, Nature 424, 527 (2003).
    [19] Peihong Zhang, Rodrigo B. Capaz, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. B 71, 153102 (2005).
    [20] C. Delmas, J. J Braconnier, C. Fouassier, and P. Hagenmuller, Solid State Ionics 3-4, 165 (1981).
    [21] R. J. Balsys and R. L. Davis, Solid State Ionics 93, 279 (1996).
    [22] J. Sugiyama, J. H. Brewer, E. J. Ansaldo, B. Hitti, M. Mikami, Y. Mori, and T. Sasaki, Phys. Rev. B 69, 214423 (2004).
    [23] P. Zhang, W. Luo, V. H. Crespi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 70, 085108 (2004).
    [24] Y. S. Meng, A. Van der Ven, M. K. Y. Chan, et al., Physical Review B 72, 172103 (2005).
    [25] J. Geck, M. von Zimmermann, H. Berger, et al., Physical Review Letters 97, 106403 (2006).
    [26] Q. Huang, M. L. Foo, J. W. Lynn, et al., Journal of Physics-Condensed Matter 16, 5803 (2004).
    [27] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, and I. Terasaki, Phys. Rev. B, 60, 10580 (1999).
    [28] T. Kawata, Y. Iguchi, T. Itoh, K. Takahata, and I. Terasaki, Phys Rev. B, 60, 10584(1999).
    [29] W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B, 62, 6869(2000).
    [30] Lee, M. Viciu, L. Li, L. Wang, Y. Y. Foo, M. L. Watauchi, S. Pascal, R. A. Cava, R. J. Ong, N. P. Nature Materials 5, 537(2006).
    [31] T. Motohashi, R. Ueda, E. Naujalis, et al., Physical Review B 67, 064406 (2003).
    [32] J. H. B. J. Sugiyama, E. J. Ansaldo, H. Itahara, T. Tani, and Y. M. M. Mikami, T. Sasaki, S. H´ebert, and A. Maignan, cond-mat/ 0310516 (2003).
    [33] Anders Mikkelsen,” Crystallographic studies of clean and alkali covered metal and semiconductor surfaces”, September 2001.
    [34] H.-B. Yang, Z.-H. Pan, A. K. P. Sekharan, T. Sato, S. Souma, T. Takahashi, R. Jin, B. C. Sales, D. Mandrus, A.V. Fedorov, Z. Wang, and H. Ding, Phys. Rev.Lett. 95, 146401 (2005).
    [35] D. J. Singh, Physical Review B 61, 13397 (2000).
    [36] H. B. Yang, Z. H. Pan, A. K. P. Sekharan, et al., Physical Review Letters 95, 146401 (2005).
    [37] D. J. Singh and D. Kasinathan, Physical Review Letters 97, 016404 (2006).
    [38] D. Qian, L. Wray, D. Hsieh, et al., Physical Review Letters 96, 046407 (2006).
    [39] M. Z. Hasan, Y. D. Chuang, D. Qian, et al., Physical Review Letters 92, 246402 (2004).
    [40] H. B. Yang, S. C. Wang, A. K. P. Sekharan, et al., Phys. Rev. Lett. 92, 246403 (2004).
    [41] M. Z. Hasan, D. Qian, Y. Li, A.V. Fedorov, Y. D. Chuang, A. P. Kuprin, M. L. Foo, and R. J. Cava, cond-mat/ 0501530.

    QR CODE