簡易檢索 / 詳目顯示

研究生: 陳裕隆
Chen Yu-Lung
論文名稱: 融入問題引導策略的模擬式學習環境之應用成效與學習歷程研究
Exploring the learning effects and behavioral patterns in a simulation-based learning environment incorporated with question-guided learning support
指導教授: 張國恩
Chang, Kuo-En
宋曜廷
Sung, Yao-Ting
學位類別: 博士
Doctor
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 137
中文關鍵詞: 模擬式學習視覺化問題引導迷思概念概念改變
英文關鍵詞: Simulation-based learning, Visualization, Question-guided, Misconception, Conceptual change
論文種類: 學術論文
相關次數: 點閱:246下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 回顧過去20年來的應用發展情形,電腦模擬實具有深厚的潛力成為促進互動、觀察與概念反思的學習工具。本研究所發展的「問題引導式模擬學習環境」,一方面藉由兼具視覺化表徵觀察與實驗參數操弄的學習環境,發揮電腦模擬對於抽象或微觀概念的具象化觀察優勢,幫助學習者解決電子學二極體單元的學習困難;另一方面則改善過去學習支援策略不足之處,融入問題引導策略引領學習者藉由互動的操作與觀察引發認知覺察與反思,達成澄清電子學二極體單元迷思概念的目標。除此之外為瞭解問題引導策略對於學習活動的影響情形,本研究將同時進行學習行為模式的分析與探討。
    經由實徵驗證,結果發現融入問題引導策略之「問題引導式模擬學習環境」對於電子學二極體單元概念的學習成效與迷思概念的修正成效均顯著優於未融入問題引導策略者,顯示「問題引導策略」確實有助於提升模擬式學習環境的應用成效。學習行為模式分析結果發現從模擬操作活動的學習行為模式中,確可顯示出問題引導機制具有引導學習者進行概念學習活動的效果。根據問卷調查分析結果,顯示超過70%的學生肯定「問題引導式模擬學習環境」可幫助他們提升學習成效、增進學習興趣及澄清迷思概念。

    Two decades in retrospect, many researches have been studying how to improve learning performance through computer simulation. Computer simulation has significant potential as a supplementary tool for conceptual reflection and interactive learning based on the integration of technology and appropriate instructional strategies. This study elucidates misconceptions in learning on diodes and constructs a simulation-based learning environment that incorporates question-guided strategies to explore the effects on correcting misconceptions and improving learning performance. The learning environment helps learner to understand complex and abstract concepts through observing external representations and exploring concept models. On the other hand, the question-quided learning support of learning environment helps learner to correct misconceptions on diodes through constructing scenarios that conflict with existing knowledge structures. Furthermore, an analysis of the learning behavioral patterns was conducted to verify and clarify the effects of question-guided strategy.
    The empirical results indicate that the system significantly corrects participants’ misconceptions on diodes and improves learning performance. This study shows that question-quided strategies could enhance the learning outcomes effectively. The analysis of the learning behavioral patterns revealed that the use of question-quided strategies to enhance the learning support in simulation-based environment is crucial to supporting the conceptual learning activities. With the questionnaire findings, we found that more than 70% of the learners in the experimental group stated that the question-quided learning environment helped to improve their learning performance, increase their interest in electronics, and correct their misconceptions on diodes.

    附表目錄 …………………………………………………………VII 附圖目錄 …………………………………………………………VIII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 7 第三節 研究範圍與限制 7 第四節 名詞釋義 9 第二章 文獻探討 11 第一節 學習理論 11 2.1.1 建構式學習 11 2.1.2 情境學習 13 2.1.3 發現式學習 14 第二節 學習策略 16 2.2.1 問題解決策略 17 2.2.2 概念改變策略 18 第三節 模擬式教學與學習 21 2.3.1 電腦模擬 21 2.3.2 模擬式教學與學習 22 2.3.3 模擬式教學應用實例 27 第四節 迷思概念 30 2.4.1 迷思概念的來源 31 2.4.2 迷思概念診斷方式 32 2.4.3 電學的迷思概念 35 第五節 序列分析 36 第三章 系統架構與功能 38 第一節 設計理念 38 第二節 系統架構 39 第三節 系統功能 42 3.3.1 概念學習活動 43 3.3.2 模擬操作活動 46 3.3.3 概念釐清活動 49 第四節 學習內容 54 第五節 迷思概念 55 第四章 研究方法 59 第一節 實驗對象 59 第二節 實驗設計 60 第三節 實驗工具 61 第四節 實驗程序 68 第五章 結果與討論 70 第一節 二極體概念學習成效分析 70 第二節 二極體迷思概念矯正成果分析 72 第三節 學習行為模式分析 76 第四節 學生態度問卷 81 第五節 討論 88 第六章 結論與建議 93 第一節 結論 93 第二節 未來研究建議 95 參考文獻 97 附錄一 …………………………………………………………..……114 附錄二 ………………………………………………………………..119 附錄三 ………………………………………………………………..124 附錄四 ………………………………………………………………..135 附表目錄 表3-1 各單元概念學習內容 …………………………………….………………. 57 表3-2 二極體電路單元相關概念內容…………………………………...………. 58 表3-3 學習二極體單元時可能存有的迷思概念 ……………………………….. 60 表4-1 實驗變項 ………………………………………………………………….. 60 表4-2 實驗設計架構 …………………………………………………………….. 61 表4-3 前測試題與概念主題對應表 …………………………………………….. 62 表4-4 後測試題與概念主題對應表 …………………………………………….. 63 表4-5 前後測各單元題目對照一覽表 ………………………………………….. 64 表 4-6 模擬學習行為編碼方案 ……………………………………………..…... 67 表 4-7 問卷題目內容分布 ………………………………………………………. 68 表 5-1 二極體成就測驗前後測的分數摘要表 …………………………….…… 71 表5-2 「二極體成就測驗」迴歸係數同質性考驗摘要表 …………………….. 71 表5-3 「二極體成就測驗」共變數分析摘要表 ……………………………….. 72 表5-4 二極體診斷測驗前、後測的迷思概念個數摘要表 …………………….. 73 表5-5 「二極體診斷測驗」迷思概念個數的迴歸係數同質性考驗摘要表 ….. 73 表5-6 「二極體診斷測驗」迷思概念個數的共變數分析摘要表 …………….. 74 表5-7 實驗組_透過教學後矯正迷思概念的人數比例 ………………………… 75 表5-8 實驗組態度問卷五點量表百分比統計表 ……………………………….. 80 附圖目錄 圖3-1 系統功能模組 …………………………………………………………… 43 圖3-2 模擬學習活動架構 ……………………………………………………… 44 圖3-3 系統架構圖 ……………………………………………………………… 45 圖3-4系統功能架構 ……………………………………………………………. 46 圖3-5 概念學習活動(具象化觀察) …………………………………………….. 47 圖3-6 概念學習活動(現象與圖表對照觀察) ………………………………….. 48 圖3-7 概念學習活動(元件功能說明) ………………………………………….. 49 圖3-8 模擬操作活動(操作說明畫面) ………………………………………….. 50 圖3-9 模擬操作活動(調整實驗參數) ………………………………………….. 50 圖3-10 模擬操作活動(觀察輸出結果) ………………………………………… 51 圖3-11 模擬操作活動(觀察負載電阻對漣波電壓的影響) …………………… 52 圖3-12 概念釐清活動(核心概念問題填答) …………………………………… 53 圖3-13 概念釐清活動(觀察齊納二極體未崩潰時流經的電流) ……………… 53 圖3-14概念釐清活動(觀察齊納二極體崩潰時流經的電流) …………………. 54 圖3-15 概念釐清活動(觀察齊納二極體崩潰時,負載電阻流經的電流) …… 55 圖3-16 概念釐清活動(更正迷思概念) ………………………………………… 55 圖3-17 概念釐清活動(強化概念理解) ………………………………………… 56 圖 4-1 實驗程序 ……………………………………………………………… 69 圖 5-1 概念學習行為模式 …………………………………………………….. 77 圖 5-2 模擬操作行為模式 …………………………………………………….. 78

    一、中文部份:
    王文科(2000)。質的教育研究法。台北:師大書苑。
    王盈琪、王美芬(2006)。利用POE教學模式探討國小三年級學童光迷思概念及其概念改變之成效。中華民國第二十二屆科學教育學術研討會,國立台灣師範大學。
    何秋萱(2004)。Flash 融入五階段概念改變教學策略對國中生遺傳概念改變的影響。國立彰化師範大學生物學系碩士論文,未出版,彰化市。
    李咏吟(1998)。認知教學理論與策略。台北:心理出版社。
    李賢哲、樊琳、張蘭友(2005)。國小學童「電池」概念之診斷—以兩段式選擇題為例。科學教育學刊,13(3), 263-288。
    林合彥(2004)。具有教學支援的網路化模擬學習環境。國立台灣師範大學資訊教育所碩士論文,未出版,台北市。
    林淑慧(2003)。問題導向學習法在遠距教學環境的應用-理論探討與實例說明。技術及職業教育雙月刊,74,50-54。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    洪妤如(2005)。應用視覺化與操作之模擬軟體在電子學上的學習效果。國立台灣師範大學資訊教育學系碩士論文,未出版,台北市。
    計惠卿、張杏妃(2001)。全方位的學習策略-問題導向學習的教學設計模式。教學科技與媒體,55,58-71。
    高頌洲(2002)。問題導向學習(PBL)導入生活科技教學活動之初探。生活科技教育,35(8),12-19。
    許永賢(1985)。兒童數學科「問題解決」的指導與發展。臺灣教育,416,27-29。
    張春興(1997) 。教育心理學—三化取向的理論與實踐。台北市:東華書局。
    張春興(2001)。教育心理學。台北市:東華書局。
    張霄亭(1995)。教學媒體與教學新科技。台北市:心理。
    莊雅茹(1996)。CAL 軟體動畫介面設計。教學科技與媒體,28,13-18。
    郭重吉(1989)。從認知的觀點探討科學教育的理論與實際。認知與學習基礎研究第三次研討會。台北市:行政院國家科學委員會。
    陳年興,石岳峻(2000)。建構式網路教學系統設計原則,全球華人計算機教育研討會,642-644。
    陳怡仁(2007)。應用數位化雙重情境學習課程探討多媒體呈現形式對國中生遺傳概念建構之影響。國立交通大學教育研究所碩士論文,未出版,新竹市。
    陳啟明、陳瓊森(1992)。發展紙筆測驗以探究高一學生對直流電路的迷思概念。科學教育,3,21-72。
    許瑛玿、廖桂菁(2002)。情境式網路輔助學習環境之研發與實踐,科學教育學刊,10(2) ,157-178。
    黃美娟(2004)國一生透過實地種植與利用電腦模擬實驗對學習遺傳學之效益研究。國立台灣師範大學科學教育研究所碩士論文,未出版,台北市。
    黃政傑(1997)。課程評鑑。臺北市: 師大書苑。
    黃福坤(1999)。資訊素養與教學─以物理教學示範實驗室輔助教學網站為例。圖書館學與資訊科學,25(2),53-62。
    楊美雪(1992)。電腦輔助學習之內涵與應用。教師天地,60,90-95。

    二、西文部份:
    Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.
    Akerson, V. L., Flick, L. B., & Lederman, N. G. (2000). The influence of young children's ideas in science on teaching practice. Journal of Research in Science Teaching, 37, 363–385.
    Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning:Methods and Development. Needham Heights, MA: Allyn & Bacon.
    Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis. (2nd ed.). UK: Cambridge University Press.
    Bar, V. & Zinn, B. (1998), Children's ideas about action at a distance. International Journal of Science Education, 19(10), 1137-1157.
    Belcher, J. W., & Olbert, S. (2003). Field line motion in classical electromagnetism. The American Journal of Physics, 71, 220–228.
    Blosser, P. (1987). Science misconceptions research and some implications for the teaching of science to elementary school students. retrieved May 20th, 2011 from the World Wide Web: http://www.ericdigests.org/pre-925/science.htm
    Brown, J. S., Collin, A., & Duguid, P. (1989). Situated Cognition and the Culture of Learning. Education Researcher, 18(1), 32-42.
    Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19, 1-l5.
    Campbell, J. O., Bourne, J. R., Mosterman, P. J., & Brodersen, A. J. (2002). The effectiveness of learning simulators for electronic laboratories. Journal of Engineering Education, 91(1), 81-87.
    Catalano, G. D., & Tonso, K. L. (1996). The sunrayce' 95 idea: adding hands-on design to an engineering curriculum. Journal of Engineering Education, 85(3), 193–199.
    Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8(3), 293–307.
    Chang, K. E., Chen, Y. L., Lin, H. Y., & Sung, Y. T. (2008). Effects of learning support in simulation-based physics learning. Computers & Education, 51(4), 1486–1498.
    Chang, K. E., Sung, Y. T., Wang, K. Y. & Dai, C. Y. (2003). Web_soc: a socratic-dialectic-based collaborative tutoring system on the world wide web. IEEE Transaction on Education, 46(1), 69–78.
    Chen, Y. L., Chang, K. E., & Sung, Y. T. (2009). A Simulation-Based Learning Environment for Conceptual Learning through Interactive Learning Activities. In T. Bastiaens et al. (Eds.), Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2009 (pp. 2455-2458). Chesapeake, VA: AACE.
    Chen, Y. L., Chang, K. E., & Sung, Y. T. (2012). Finding Flaws in Knowledge System: Investigate the Misconceptions of Diode in Electronics. In Chi-Cheng Chang et al. (Eds.), Proceedings of 2012 The 5th Asia-Pacific Conference on Engineering and Technology Education (pp. 181-187). ATEEM, Taipei, Taiwan.
    Chen, Y. L., Hong, Y. R., Sung, Y. T., & Chang, K. E. (2011). Efficacy of simulation-based learning of electronics using visualization and manipulation. Educational Technology & Society, 14(2), 269–277.
    Chen, Y. L., Pan, P. R., Sung, Y. T., & Chang, K. E. (2013). Correcting Misconceptions on Electronics: Effects of a simulation-based learning environment backed by a conceptual change model. Educational Technology & Society, 16(2), 212–227.
    Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: a theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.
    Colaso, V., Kamal, A., Saraiya, P., North, C., McCrickard, S., & Shaffer, C. (2002). Learning and retention in data structures: A comparison of visualization, text, and combined methods. Paper presented at the Proceedings of ED-MEDIA 2002 World Conference on Educational Multimedia/Hypermedia and educational Telecommunications.
    Dawson, T. E. (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant inter-actions. Oecologia 95, 565-574.
    De Jong, T. & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(22), 179–201.
    Dillenbourg, P. (2008). Integrating technologies into educational ecosystems. Distance Education, 29(2), 127-140.
    Doulai, P. (2001).The role of computer simulation in electric energy systems education. In Tomorrow's Education in Electrical Technologies: Revisited Methods and Tools for Renewed Motivation, European Power Electronics and Drive Association.
    Duit, R. & Treagust, D. F. (1995). Students’ conceptions and constructivist teaching approaches. In B. J. Fraser and H. J. Walberg (Eds.), Improving Science education. Chicago, IL:The University of Chicago Press.
    Engelhardt, P. & Beichner, R. (2004). Students understanding of direct current resistive electrical forces. American Journal of Physics, 72(1), 98–115.
    Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students' misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39, 1001–1015.
    Fisher, K., & Lipson, J. (1986). Twenty questions about students’ errors. Journal of Research in Science Teaching, 23, 783-803.
    Forinash, K., & Wisman, R. (2005). Building real laboratories on the internet. International Journal of Continuing Engineering Education and Lifelong Learning, 15(1), 56–66.
    Gage,N.L.(1986): Hard Gains in The Soft Sciences: The Case of Pedagogy. Bloomington; IN: Phi Delta Kappa.
    Gagne, R. M. (1985). The conditions of learning (4th ed.). Holt, Rinehart & Winston, New York.
    Gallagher, S. A., Sher, B. T., Stepien, W. J., & Workman, D. (1995). Implementing problem-based learning in science classrooms. School Science and Mathematics, 95(3), 136-146.
    Garnett, P.J. & Treagust, D.F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: electric circuits and oxidation reduction equations. Journal of Research in Science Teaching, 29, 121-142.
    Geban, O., Askar, P., & Ozkan, I. (1992). Effects of computer simulations and problems solving approaches on high school students. Journal of Educational Research, 86, 5–10.
    Gilbert, J. & Watts, D. (1983). Concepts, misconceptions, and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61–98.
    Gordin, D. N., & Pea, R. D. (1995). Prospects for scientific visualization as an educational technology. Journal of the Learning Sciences, 4, 249–279.
    Griffard, P. B. & Wandersee, J. H. (2001). The two-tier instrument on photosynthesis: what does it diagnose? International Journal of Science Education, 23(10), 1039–1052.
    Gunstone R.F. & Champagne A.B. (1990). Promoting conceptual change in the laboratory. In The Student Laboratory and the Science Curriculum (ed. E.Hegarty-Hazel), pp. 159–182. Routledge, London.
    Harrison, A., G., Grayson, D., J., & Treagust, D., F. (1999). Investigating a grade 11 student's evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55-87.
    Haslam, F., & Treagust, D. F. (1987). Diagnosing secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier multiple choice instrument, Journal of Biological Education, 21, 203-211.
    Head, J. (1986). Research into Alternative Frameworks:promes and problems. Research In Technological Education, 4(2), 203-211.
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2007). An analysis of peer assessment online discussions within a course that uses project-based learning. Interactive Learning Environments, 15(3), 237-251.
    Hou, H. T., Sung, Y. T., & Chang, K. E. (2009). Exploring the behavioral patterns of an online knowledge sharing discussion activity among teachers with problem-solving strategy. Teaching and Teacher Education, 25(1), 101-108.
    Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioral patterns of online learning activities. British Journal of Educational Technology, 41(2), e25-27.
    Hou, H. T., & Wu, S. Y. (2011). Analyzing the social knowledge construction behavioral patterns of an online synchronous collaborative discussion instructional activity using an instant messaging tool: A case study, Computers & Education, 57(2), 1459-1469.
    Jaakkola, T. & Nurmi, S. (2004). Academic impact of learning objectives: The case of electric circuits. Paper presented at Learning objects in the classroom: A European perspective, symposium at the British Educational Research Association annual conference, Manchester, 16–18 September.
    Jaakkola, T. & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24, 271–283.
    Jaakkola, T., Nurmi, S. & Lehtinen, E. (2005). In quest of understanding electricity - Binding simulation and laboratory work together. Paper for AERA (American Educational Research Association) 2005 conference. Montreal, Canada, 11-15 April.
    Jan, T. S., & Jan, C. G. (2000). Designing simulation software to facilitate learning of quantitative system dynamics skills: a case in Taiwan. Journal of the Operational Research Society, 51, 1409–1419.
    Jensen, D., Self, B., Rhymer, D., Wood, J., & Bowe, M. (2002). A rocky journey toward effective assessment ofvisualization modules for learning enhancement in engineering mechanics. Educational Technology & Society, 5(3), 150–162.
    Jeong, A. C. (2003). The sequential analysis of group interaction and critical thinking in online threaded discussions. The American Journal of Distance Education, 17(1), 25–43.
    Jonassen, D. H., Davidson, M., Collins, M., Campbell, J., & Haag, B. B. (1995). Constructivism and computer-mediated communication in distance education. The American Journal of Distance Education, 9(2), 7–27.
    Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolution affect students’ explanations. Journal of Science Education and Technology, 16, 413–429.
    Khoo, G. S., & Koh, T. S. (1998). Using visualization and simulation tools in tertiary science education. Journal of Computers in Mathematics and Science Teaching, 17(1), 5–20.
    Kikas, E. (2003). University students’ conceptions of different physical phenomena. Journal of Adult Development, 10(3), 139–150.
    Korhonen, A., & Malmi, L. (2000). Algorithm Simulation with Automatic Assessment. Paper presented at the 5th Annual ACM SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education (ITiCSE 2000). Helsinki, Finland, 160–163.
    Küçüközer, H. & Kocakülah, S. (2007). Secondary school students’ misconceptions about simple electric circuits. Journal of Turkish Science Education, 4, 101-115.
    Kuhn, T. S. (1962). The Structure of Scientific Revolution. Chicago: The University of Chicago Press.
    Kukkonen, J., Martikainen, T., & Keinonen, T. (2009). Simulation of electrical circuit in instruction by fifth graders. In Gorghiu, G., Gorghiu, L.M., Glava, A.E., & Glava, C.C., (eds.), Education 21, Special Number: Virtual Instruments and Tools in Sciences Education - Experiences and Perspectives, 2009 (pp. 158–164). Casa Cărţii de Ştiinţă Publishing House, Cluj Napoca, Romania.
    Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press.
    Lee, Y. & Law, N. (2001). Explorations in promoting conceptual change in electrical concepts via ontological category shift. International Journal of Science Education, 23(2), 111-149.
    Liégeois, L., Chasseigne, G., Papin, S., & Mullet, E., (2003). Improving high school students’ understanding of potential difference in simple electric circuits. International Journal of Science Education 25(9), 1129–1145.
    Liegeois, L., & Mullet, E. (2002). High school students’ understanding of resistance in simple series electric circuits. International Journal of Science Education, 24(6), 551-564.
    Liew, C. W., & Treagust, D. F. (1998). The effectiveness of Predict-Observe-Explain tasks in diagnosing students’ understanding of science and in identifying their levels of achievement. (ERIC document Reporduction Service No. ED 420715).
    Luo, W., Stravers, J. A., & Duffin, K. L. (2005). Lessons learned from using a web-based-based interactive landform simulation model (WILSIM) in a general education physical geography course. Journal of Geoscience Education, 53(5), 489–493.
    McLellan, H. (1993). Situated learning in focus: Instruction to special issue. Educational Technology, 33(3), 5-9.
    Meyer, D. G., & Krzyzkowski, R. A. (1994). Experience using the video jockey system for the instructional multimedia delivery. Paper presented at the ASEE Frontiers in Education Conference, 262-266.
    Mulopo, M. M., & Fowler, H. S. (1987). Effects of traditional and discovery instruction approaches on learning outcomes for learners of different intellectual development. A study of chemistry students in Zambia. Journal of Research in Science Teaching, 24, 217-227.
    Mutimucuio, I.V. (1998). Improving Students’ Understanding of Energy. Unpublished Ph.d Dissertation. Huisdrukkerij, Amsterdam, Lay out: René Almekinders.
    Mzoughi, T., Foley, J.T., Herring, S.D., Morris, M. & Wyser, B. (2005). WebTOP: web-based interactive 3D optics and waves' simulations. International Journal of Continuing Engineering Education and Life-Long Learning, 15(1), 79–94.
    Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., & Velázquez-Iturbide, J. A. (2003). Exploring the role of visualization and engagement in computer science education, ACM SIGCSE Bulletin, 35(2), 131–152.
    Nersessian, N.J. (1991). Why do thought experiments work? In Thirteenth Annual Proceedings of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Inc.
    Nguyen, HD. (2013). Design of computer simulator-based learning modules and assessments for a subject in Control Engineering. Proceedings of the 24th Annual Conference of the Australasian Association for Engineering Education, 8-11 December 2013, Gold Coast, Queensland, 1-10.
    Njoo, M., & de Jong, T. (1993). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support. Journal of Research in Science Teaching, 30, 821-844.
    Novak, J. D. (1981). Applying learning psychology and philosophy of science to biology teaching. The American Biology Teacher, 43(1), 12–20.
    Novak, J. D., & Gowin, D. B. (1984). Concept mapping for meaningful learning. Cambridge: Cambridge University Press.
    Periago, M. C. & Bohigas, X. (2005). A study of second-year engineering students' alternative conceptions about electric potential, current intensity and Ohm's law. European Journal of Engineering Education, 30(1), 71–80.
    Peterson, R.F. & Treagust, D.F. (1989). Grade-12 students’ misconceptions of covalent bonding and structure. Journal of Chemical Education, 66, 459-460.
    Pfundt, H., & Duit, R. (1991). Bibliography: Students’ alternative frameworks and science education (3rd ed.). Kiel, West Germany: University of Kiel, IPN Reports in Brief.
    Polya, G. (1957). How to solve it. Princeton, New Jersey: Princeton University Press.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211–227.
    Quinn, J., & Alessi, S. (1994). The effects of simulation complexity and hypothesis generation strategy on learning. Journal of Research on Computing in Education, 27, 75-91.
    Reiner, M., Slotta, J. D., Chi, T. H., & Resnick, L. B. (2000). Naïve physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34.
    Ronen, M. & Eliahu, M. (2000). Simulation- a bridge between theory and reality: the case of electric circuits. Journal of Computer Assisted Learning, 16, 14–26.
    Ruiz-Primo, M. A. & Shavelson, R. J. (1996). Problem and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569–600.
    Rutkowski, J. & Moscinska, K. (2011). Blended engineering course- Electric Circuit Theory case study. in Proceedings of 2011 IEEE International Symposium on Circuits and Systems (ISCAS), 333–336.
    Rutten, N., van Joolingen, W.R., & van der Veen, J.T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136–153.
    Sencar, S. & Eryilmaz, A. (2004). Factors mediating the effect of gender on ninth-grade Turkish students' misconceptions concerning electric circuits. Journal of Research in Science Teaching, 41(6), 603–616.
    Sengupta, P., & Wilensky, U. (2009). Learning electricity with NIELS: thinking with electrons and thinking in levels. International Journal of Computers for Mathematical Learning, 14(1), 21-50.
    Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
    Suchman, L. A. (1987). Plans and Situated Action: The Problem of Human-machine Communication. New York: Cambridge University Press.
    Sutton, C., & West, L. (1982). Investigating children’s existing ideas about science. (ERIC Document Reproduction Service No. ED230424).
    Thomas, R., & Neilson, I. (1995). Harnessing simulations in the service of education: the Interact simulation environment. Computers & Education, 25, 21-29.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students’ misconceptions in science. International Journal of Science Education, 10, 159–169.
    Treagust, D. F. & Chandrasegaran, A. L. (2007). The Taiwan National Science Concept Learning Study in an International Perspective. International Journal of Science Education, 29(4), 391–403.
    Treagust, D. F., Duit, R. & Fraser, B., Eds. (1996). Improving teaching and learning in science and mathematics. New York: Teacher College Press.
    Treagust, D. F. & Haslam, F. (1986). Evaluating secondary students’ misconceptions of photosynthesis and respiration in plants using a two-tier diagnostic instrument. Paper presented at the 59th Annual Meeting of the National Association for Research in Science Teaching, San Francisco, California, March 28-31.
    Tsai, C. C., & Chou, C. (2002). Diagnosing students’ alternative conceptions in science through a networked two-tier test system. Journal of Computer Assisted Learning, 18, 157–165.
    Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). “Animation: can it facilitate?”.International Journal of Human-Computer Studies, 57, 247–262.
    Tytler, R. (2002). Teaching for understanding in science: constructivist/ conceptual change teaching approaches. Australian Science Teachers’ Journal, 48(4), 30-35.
    Van Joolingen, W. R., & de Jong, T. (1997). An extended dual search space model of scientific discovery learning. Instructional Science, 25, 307-346.
    Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, 1, 205-221.
    Von Glasersfeld (1989). Ernst, Constructivism in education. In T. Husen & N. Postlewaite (Eds.), International Encyclopedia in Education; supp1.1:162-163. Oxford, England: Pergamon Press.
    Vosniadou, S. (2002). On the nature of naïve physics. In: M. Limon and L. Mason, Editors, Reconsidering conceptual change: Issues in theory and practice, Kluwer, Dordrecht, The Netherlands, 61-76.
    Wallace, D. R., & Mutooni, P. (1997). A comparative evaluation of world wide web-based and classroom teaching. Journal of Engineering Education, 86(3), 211-219.
    Wandersee, J. H., Mintzes, J. J. & Novak, J. D. (1994). Research in Alternative Conceptions in Science: Part II Learning. In G. L. Dorothy (Ed.), Handbook of research on science teaching and learning (pp. 177-210). Macmillan Publishing Company: New York: Macmillan Publishing Co.
    West, D. J., & Watson, D. E. (1996). Using problem-based learning and educational reengineering to improve outcomes. (ERIC Document Reproduction Service No. ED 400-242)
    White, R., & Gunstone, R. F. (1992). Prediction-observation-explanation. In White, R., & Gunstone, R., Probing understanding, 44–64. London: The Falmer Press.
    Wiesner, T. F. & Lan, W. (2004). Comparison of student learning in physical and simulated unit operations/experiments. J. Engr. Educ., 93, 195–204.
    Young, M. F. (1993). Instructional design for situated learning. Educational Technology Research and Development, 41(1), 43-58.
    Young, M. F. & Kulikowich, J. M. (1992, April 22). Anchored instruction and anchored assessment: An ecological approach to measuring situated learning. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco, CA, 1-21.
    Zacharia, Z.C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students' conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120–132.
    Zhang, J., Chen, Q., Sun, Y., & Reid, D. J. (2004). Triple scheme of learning support design for scientific discovery learning based on computer simulation: experimental research. Journal of computer Assisted Learning, 20, 269-282.

    下載圖示
    QR CODE