簡易檢索 / 詳目顯示

研究生: 蔡宗翰
Tsung-Han Tsai
論文名稱: 大氣電漿沉積超疏水膜之特性探討與應用技術開發
Development and characteristics analysis of super-hydrophobic film by atmospheric pressure plasma deposition
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 超疏水膜大氣電漿圖案化製程微透鏡陣列
英文關鍵詞: superhydrophobic film, atmospheric plasma, patterning process, microlens array
論文種類: 學術論文
相關次數: 點閱:530下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏水膜一般是指水滴在表面之接觸角可大於150°的薄膜,而疏水處理技術已在自潔元件、微流道系統及生物相容性等潛在應用備受關注。本研究試圖以低成本之大氣電漿系統,於低溫下(<150°C)快速沉積超疏水薄膜。此外,本研究亦探討疏水膜之表面形貌、成分與物理特性,並結合黃光微影及光阻掀離(lift-off)製程,對超疏水膜進行圖案化,應用於液珠微透鏡陣列(LMLA)之製程開發,於完成元件後,探討此液珠微透鏡陣列之光學性能,並於微透鏡所使用之液體內摻入螢光粉,進行藍光LED封裝製程之開發,使其晶片兼具提升光萃取效率及白光轉換之功能。
    本研究主要分為三大項目:(1) 以大氣電漿沉積出超疏水膜,針對大氣電漿沉積系統,嘗試使用不同自組裝有機單體及不同處理時間,找出最佳處理參數。實驗結果顯示,使用壓縮空氣(clean dry air, CDA)為製程氣體,搭配六甲基二矽氮烷(hexamethyldisilazane, HMDS)有機矽烷單體,所製備之超疏水膜的水接觸角已可達到150左右,與水滴在蓮葉上之接觸角相仿;(2) 將所得之超疏水膜,進行光學性質、表面形貌、成分等特性評估。本部分實驗將使用可見光光譜儀(spectroscope)、掃描式電子顯微鏡(scanning electron microscope, SEM)、共軛焦顯微鏡(confocal microscope)等進行量測,初步實驗結果顯示本論文所製備的超疏水膜,可達到約88%的可見光穿透率,平均表面粗糙度Ra ≒ 500 nm,為一較粗糙之表面;(3) 應用大氣電漿技術,搭配黃光微影及光阻掀離製程進行疏水膜之圖案化,利用液體本身的表面張力,在親水區形成液體鏡頭。本實驗已利用此圖案化製程,製作出液珠微透鏡陣列,並成功於所製備透鏡之液體內添加奈米級螢光粉,後續研究將以此技術為基礎,實現低成本微透鏡陣列的製作及其在LED螢光粉封裝之應用。

    A film, with water contact angle over than 150°, is usually categorized as superhydrophobic. Hydrophobic treatments have received much attention on the application potentials of self-cleaning devices, microfluidic systems, and biocompatibility. This study attempts to deposite superhydrophobic films using a low-cost atmospheric plasma process (APP) at the conditions of low temperatures (<150°C) and high deposition rate. The morphology, composition, and physical characteristics of hydrophobic films have been explored. Moreover, a technique, which combines photolithography and lift-off process to pattern the super-hydrophobic film, has been developed for fabricating liquid microlens array (LMLA). Except evaluating the optical performance of the liquid microlens, nano-scaled phosphor powder was also added into the liquid of LMLA for LED packaging, attempt to enhance the light extraction efficiency and white light conversion function.
    This study has three major research objectives: (1) Deposit super-hydrophobic films by atmospheric plasma under different self-assembly monomers and processing time to find the optimal depositing parameters. By using clean dry air (CDA) as the process gas, N2 as carrier gas of hexamethyldisilazane (HMDS) monomer. A super-hydrophobic film has been produced, which has water contact angle close to 150, similar as the characteristic of lotus leaves. (2) Evaluate the optical properties, surface morphology, composition of the superhydrophobic film by using the visible light spectroscopy, scanning electron microscopy (SEM), and confocal microscopy measurement etc. The results show that the superhydrophobic film can reach visible light transmittance of 88% and average surface roughness (Ra) of ~500 nm, which is a quite rough surface. (3) Combine lithography, atmospheric plasma treatment, and lift-off process to pattern the hydrophobic film. By the surface tension of the liquid itself, the liquid microlens array would be self-aligned and formed at hydrophilic region. Except the fabrication of LMLA, this study also added nano-scaled phosphor powder into the liquid lens successfully. The initial evaluation of the light extraction and white light conversion for blue LED package combined with a patterned array of phosphor powder has been investigated. Base on this low-cost and unique technique of microlens array production, the application of LED package by microlens array with phosphor powder will be developed in follow-up studies.

    摘要 I Abstract II 總目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 超疏水原理簡介 6 1.2.1 超疏水的緣起 6 1.2.2 接觸角之物理意義 6 1.2.3 Wenzel模型 7 1.2.4 Cassie模型 7 1.3大氣電漿技術簡介與發展 10 1.3.1 大氣電漿技術優勢 10 1.3.2 大氣電漿製作超疏水膜之發展 11 1.3.3 大氣電漿的限制與挑戰 11 1.4 微透鏡陣列簡介與應用 12 1.5 研究動機與目的 13 1.6 論文架構 15 第二章 文獻回顧與理論探討 16 2.1 疏水膜製備技術分類 16 2.1.1 光刻技術 (Lithography) 16 2.1.2 模板法 (Templating) 16 2.1.3 化學氣相沉積法 (Chemical Vapor Deposition, CVD) 17 2.1.4 溶膠-凝膠法 (Sol-gel) 17 2.1.5 靜電紡絲技術 (Electrospinning) 18 2.1.6 電漿處理 (Plasma treatment) 18 2.2 電漿放電原理 22 2.3 常壓電漿原理與種類 24 2.4 以大氣電漿製備超疏水膜之文獻回顧 30 2.5 分子自組裝技術(self-assembled monolayer, SAM)簡介 36 2.5.1 自組裝薄膜之由來 36 2.5.2 自組裝薄膜之結構 37 2.5.3 自組裝薄膜之種類 37 2.5.4 烷基矽烷自組裝行為探討 38 2.6 超疏水膜之元件應用 41 2.7 微透鏡陣列應用於LED元件封裝技術 50 2.7.1 LED之封裝技術及發展 50 2.7.2 LED之螢光粉封裝 51 2.7.3微透鏡陣列於LED元件封裝之應用 51 第三章 實驗設計與規劃 57 3.1 實驗設計 57 3.2 實驗規劃 61 3.3 實驗與檢測設備 64 第四章 實驗結果與討論 71 4.1 超疏水膜之製作 71 4.1.1 自組裝單體之沉積結果探討 71 4.1.2 疏水膜表面形貌量測 73 4.1.3 電漿沉積時間對薄膜性能之影響 73 4.2 超疏水膜圖案化製程 87 4.2.1 疏水膜圖案定義之結果 87 4.2.2 超音波震洗時間對疏水膜之影響 87 4.3 自對準液珠微透鏡陣列 92 4.3.1 液珠微透鏡陣列光學性能之量測 92 4.3.2 液珠微透鏡陣列於螢光粉封裝之應用 94 第五章 結論與未來展望 102 5.1 結論 102 5.2 未來展望 103 參考文獻 104

    1. http://scienceroom.net/nano-material-of-nature-230.html
    2. http://www.milkweedcafe.com/microscope.html
    3. http://lancasteronline.com
    4. http://www.imos.com.tw
    5. http://www.zixilai.com
    6. W. Barthlott, C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces", Planta, 202, pp. 1-8 (1997).
    7. H. M. Shang, Y. Wang, S. J. Limmer, T. P. Chou, K. Takahashi, G. Z. Cao, "Optically transparent superhydrophobic silica-based films", Thin Solid Films, 472, pp. 37-43 (2005).
    8. A. Nakajima, K. Abe, K. Hashimoto, T. Watanabe, "Preparation of hard super-hydrophobic films with visible light transmission", Thin Solid Films, 376, pp. 140-143 (2000).
    9. M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, D. Zhu, "Electrochemical deposition of conductive superhydrophobic zinc oxide thin films", J. Phys. Chem. B, 107, pp. 9954-9957 (2003).
    10. W. Lee, M. K. Jin, W. C. Yoo, J. K. Lee, "Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability", Langmuir, 20, pp. 7665-7669 (2004).
    11. V. A. Ganesh, H. K. Raut, A. S. Nair and S. Ramakrishn, "A review on self-cleaning coatings", Materials Chemistry 21, pp. 16304–16322 (2011).
    12. T. N. Krupenkin, et al., "From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces", Langmuir, 20, pp. 3824-3827 (2004).
    13. F. Mumm, A. T. J. van Helvoort, P. Sikorski, "Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems", Acs Nano 3.9, pp. 2647-2652 (2009).
    14. T. Young, "An Essay on the Cohesion of Fluids", Philos Trans. R. Soc. London, 95, pp. 65-87 (1805).
    15. R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem., 28, 988-994 (1936).
    16. A. B. D. Cassie, S. Baxter, "Wettability of porous surfaces", Trans. Faraday. Soc., 40, pp. 546-551 (1944).
    17. 洪昭南、郭有斌, "電漿反應器與原理", 化工技術,第9卷, 第10期, pp. 156-176 (2001).
    18. J. H. Kim, G. Liub, S. H. Kim, "Deposition of stable hydrophobic coatings with in-line CH4 atmospheric RF plasma", J. Mater. Chem, 16, pp. 977-981 (2006).
    19. A. Satyaprasad, V. Jain, S. K. Nema, "Deposition of superhydrophobic nanostructured teflon-like coating using expanding plasma arc", Appl. Surf. Sci., 253, pp. 5462-5466 (2007).
    20. J. S. Kim, D. S. Kim, J. J. Kang, J. D. Kim, C. J. Hwang, "Replication and comparison of concave and convex microlens arrays of light guide plate for liquid crystal display in injection molding", Polymer engineering and science, pp. 101-106 (2010).
    21. E. T. Bishop, "The light field camera: extended depth of field, aliasing, and superresolution", IEEE transactions on pattern analysis and machine intelligence, pp. 972-986 (2012).
    22. E. Roy, B. Voisin, J. F. Gravel, R. Peytavi, D. Boudreau, T. Veres, "Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays", Microelectronic Engineering , pp. 2255–2261 (2009).
    23. http://www.gizmag.com/microlens-arrays-via-hot-embossing/17390/
    24. I. A. Grimaldi, S. Coppola, F. Loffredo, F. Villani, C. Minarini, V. Vespini, L. Miccio, S. Grilli, and P. Ferraro, "Printing of polymer microlenses by a pyroelectrohydrodynamic dispensing approach", Optics Letters, pp. 2460-2462 (2012).
    25. T. Klotzbuecher, D. Dadic, "Fabrication of micro-lenses using excimer laser ablation by means of laser-generated grey-tone-masks Proceedings of the SPIE", pp. 75850 (2010).
    26. Y. Kwon, N. Patankar, J. Choi, J. Lee, "Design of surface hierarchy for extreme hydrophobicity. ", Langmuir, 25, pp. 6129-6136 (2009).
    27. Y. W. Choi, J. E. Han, S. Lee, D. Sohn, "Preparation of a superhydrophobic film with UV imprinting technology. Macromol" Res 17, 821-4 (2009).
    28. J. Z. Wang, Z. H. Zheng, H. W. Li, W. T. S. Huck, H. Sirringhaus, "Dewetting of conducting polymer inkjet droplets on patterned surfaces.", Nat Mater, 3, pp. 171-176 (2004).
    29. Z. G. Guo, W. M. Liu, "Biomimic from the superhydrophobic plant leaves in nature binary structure and unitary structure." Plant Sci 172, 1103-12 (2007).
    30. S. M. Lee, T. H. Kwon, "Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf. ", J Micromech Microeng, 17, pp. 687-692 (2007).
    31. S. M. Lee, T. H. Kwon, "Mass-producible replication of highly hydrophobic surfaces from plant leaves. ", Nanotechnology, 17, 3189–3196 (2006).
    32. F. Shi, Z. Liu, G. L. Wu et al., "Surface imprinting in layer by- layer nanostructured films. ", Adv Funct Mater 17, pp. 1821-1827 (2007).
    33. E. Bormashenko, T. Stein, G. Whyman, Y. Bormashenko, R. Pogreb, "Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. ", Langmuir, 22, pp. 9982-9985 (2006).
    34. W. K. Cho, I. S. Choi, "Fabrication of hairy polymeric films inspired by geckos wetting and high adhesion properties.", Adv Funct Mater, 18, pp. 1089-1096 (2008).
    35. A. Borras, A. Barranco, A.R. Gonzalez-Elipe, "Reversible superhydrophobic to superhydrophilic conversion of Ag/TiO2 composite nanofiber surfaces.", Langmuir, 24, pp. 8021-8026 (2008).
    36. J. Bico, C. Marzolin, D. Quere, Pearl drops. Europhys Lett 47, 220-6 (1999).
    37. M. Manca, A. Cannavale, L. De Marco, A. S. Arico, R. Cingolani, G. Gigli, "Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.", Langmuir, 25, pp. 6357-6362 (2009).
    38. M. L. Ma, R. M. Hill, J. L.Lowery, S. V. Fridrikh, G. C. Rutledge, "Electrospun poly(styreneblock-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. ", Langmuir, 21, pp. 5549-5554 (2005).
    39. Ma M.L., Mao Y., Gupta M., Gleason K.K., Rutledge G.C., "Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. " , Macromolecules, 38, pp. 9742-9748 (2005).
    40. Ding B, Ogawa T, Kim J, Fujimoto K, Shiratori S. Fabrication of a superhydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films, 516, pp. 2495-2501 (2008).
    41. M. Manca, B. Cortese, .I. Viola, A. S. Arico, R. Cingolani, G. Gigli, "Influence of chemistry and topology effects on superhydrophobic CF4-plasma-treated poly(dimethylsiloxane)(PDMS).", Langmuir, 24, pp. 1833-1843 (2008).
    42. K. Tsougeni, D. Papageorgiou, A. Tserepi, E. Gogolides, "Smart polymeric microfluidics fabricated by plasma processing controlled wetting, capillary filling and hydrophobic valving. ", Lab Chip, 10, pp. 462-469 (2010).
    43. Y. Kwon, N. Patankar, J. Choi, J. Lee, "Design of surface hierarchy for extreme hydrophobicity. " Langmuir, 25, pp. 6129-6136 (2009).
    44. Y. Y. Ji, S. S. Kim, O. P. Kwon, S. H. Lee, "Easy fabrication of large-size superhydrophobic surfaces by atmospheric pressure plasma polymerization with non-polar aromatic hydrocarbon in an in-line process", Appl. Surf. Sci, 255, pp. 4575-4578 (2009).
    45. 賴耿陽, "IC製程之濺射技術", 復漢出版社, (1997).
    46. 莊達人, "VLSI製造技術", 高立圖書有限公司, (2002).
    47. J. L. Vossen and W. Kern, “Thin film processes II", Academic press, New york, pp. 21 (1978).
    48. 張家豪等人, "電漿源原理與應用之介紹", 物理雙月刊, (2006).
    49. P. K. Chua, J. Y. Chena, L. P. Wanga and N. Huangb, “Plasma-surface modification of biomaterials", Materials science and engineering, 36, pp. 143-206 (2002).
    50. http://plasmaclean.blogspot.com/2009_10_01_archive.html
    51. J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks and G. S. Selwyn, “Etching materials with an atmospheric-pressure plasma jet", Plasma sources science technology, 7, pp. 282-285 (1998).
    52. Y. C. Hing, H. S. Uhm and W. J. Yi, “Atmospheric pressure nitrogen plasma jet: Observation of striated multilayer discharge patterns", Applied physics letters, 93, pp. 051504 (2008).
    53. M. H. Han, J. H. Noh, T. I. Lee et al., “High-rate SiO2 deposition by oxygen cold arc plasma jet at atmospheric pressure ", Plasma processes and polymers, 5, pp. 861-866 (2008).
    54. A. Ladwig, S. Babayan, M. Smith, M. Hester, W. Highland, R.,Koch, R. F. Hicks, "Atmospheric plasma deposition of glass coatings on aluminum", Surf. Coat. Technol., 201, pp. 6460-6464 (2007).
    55. Raballand, V., Benedikt, J., Keudell, A. V., "Deposition of carbon-free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet", Appl. Phys. Lett., 92, pp. 091502/091501-091502/091503 (2008).
    56. S.H. Yang, C.H. Liu, C.H. Su, H.Chen, "Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application.", Thin Solid Films, 517, pp. 5284-5287 (2009).
    57. Pockels A., "Prof. van der waals on the continuity of the liquid and gaseous states.", Nature, 43, pp. 437-439 (1891).
    58. I. Langmuir, "The constitution and fundamental properties of solids and liquids." J. Am. Chem. Soc., 39, pp. 1848-1906 (1917).
    59. W. C. Bigelow, D. L. Pickett, W. A .Zisman, Collid Interface Sci. 1, 513 (1946).
    60. Kuhn, H., Möbius, D., Bücher, H., Weissberger, A., & Rossiter, B., "Physical methods of chemistry ", Vol. 1Wiley, New York, pp. 577 (1972).
    61. Kim M. T., Lee J., "Characterization of amorphous SiC:H films deposited from hexamethyldisilazane", Thin Solid Films, 303, pp. 173-179 (1997).
    62. M. Jönsson-Niedziółka et al., "EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces." Lab on a Chip, 11.3, pp. 490-496 (2011).
    63. J. H. Choi, Y. M. Kim, Y. W. Park, T. H. Park, K. Y. Dong, B. K. Ju, "Hydrophilic dots on hydrophobic nanopatterned surfaces as a flexible gas barrier. ", Langmuir, 25(12), pp. 7156-7160 (2009).
    64. Lu Jian, Hideki Takagi, and Ryutaro Maeda, "Chip to wafer temporary bonding with self-alignment by patterned FDTS layer for size-free MEMS integration.", Sensors 2011 IEEE, pp. 1121-1124 (2011).
    65. S. Liu and X. Luo, "Led packaging for lighting applications: design, manufacturing, and testing", John Wiley & Sons (2011).
    66. M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Carford, "Status and future of high-power light-emitting diodes for solid-state lighting", IEEE J. Disp. Techno., 3, pp. 160-175 (2007).
    67. 鄭景太, "高功率LED封裝技術的發展現況", 工業材料雜誌266期, pp. 117-127 (2009).
    68. E. Park, M. J. Kim, and Y. S. Kwon, "Microlens for efficient coupling between LED and optical fiber", Photonics Technology Letters, IEEE, 11.4, pp. 439-441 (1999).
    69. D. S. Han et al., "Improvement of light extraction efficiency of flip-chip light-emitting diode by texturing the bottom side surface of sapphire substrate", Photonics Technology Letters, IEEE, 18.13, pp. 1406-1408 (2006).
    70. X. H. Li et al., "Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios", Photonics Journal, IEEE, 3.3, pp. 489-499 (2011).

    下載圖示
    QR CODE