簡易檢索 / 詳目顯示

研究生: 羅智昇
Tsu-Sheng Luo
論文名稱: 精密填蠟金屬沉積之陣列微孔製作
Fabrication of Micro Holes Array by Precision Filled Wax Metal Deposition
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 擠製精密金屬沉積微孔放電
英文關鍵詞: Wax, extrusion, precision electroforming, micro EDM hole-drilling
論文種類: 學術論文
相關次數: 點閱:218下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微型孔或陣列微型孔使用範圍非常廣泛,如微型噴油器、CPU散熱器、紡紗機導紗噴嘴、微油霧器及微霧化器等微型製品,都需應用微型孔。本研究主要目的在呈現一種陣列微孔的新製程技術—『精密填蠟電鑄法』。此項新製程以微加工技術為主軸,配合犧牲層的充填及精密電鑄法,開發陣列微型孔。實驗之初,先利用深孔放電加工法,對鏡面不銹鋼基材進行放電鑽孔加工,加工完成的基材置入擠製模具中,再以58°C的擠製溫度將軟化的蠟由陣列微孔擠出,完成的陣列蠟模以精密電鑄法進行金屬沉積,沉積的厚度視沉積時間的長短決定。最後,試片再以80°C的熱水浸泡,將陣列蠟模去除,即可獲得高精度陣列微孔的結構。由實驗結果顯示,擠製的蠟模具有優異的耐酸性、耐熱性及良好的去除性。陣列微孔平均直徑0.13mm,形狀精度佳。此法具生產速度快與製作費用低廉的優點,對多樣性產品開發可行性極高。

    The major purpose of the study presents a novel fabrication approach for machining micro holes array—“Precision Filled Wax Electroforming”. A set of micro holes array with 170 µm diameter is fabricated using micro processes that including micro EDM hole-drilling, filling sacrificial material, precision electroforming and stripping. First of all, the substrate that is made of mirror SUS304 is EDM drilling, then, the softened wax in the guide tube is extruded through the micro holes on the substrate. The wax is formed with micro precision cylindrical shape. The wax is as the electroforming mole and deposited a layer of metal. Finally, the structure with micro holes array is obtained after the wax is melted and cleaned inside the work part by hot water. Experimental data show that the wax mold has excellent acid-resisting, heat-resisting and perfect stripping. The average hole diameter of the finished micro holes array is 0.17mm as well as ideal form accuracy. The proposed approach can significantly contribute to the precision machining industry.

    中文摘要…………………………………………………………...…………I 英文摘要…………………………………………………………...…………II 目錄…………………………………………………………….……..………III 圖目錄……………………………………………………………………... VIII 表目錄………………….……….……………………………………………XII 符號表……………………………..………………….….………………....XIII 第一章 緒論………………………………………………………………….1 1-1前言……………………………………………………………….…….….1 1-2研究動機………………………………………………………...…………2 1-3研究目的……………………………………………………………...……3 1-4研究方法…………………………………………………………………...3 1-5文獻回顧…………………………………………………………………...4 第二章 實驗原理…………………………………….………………………7 2-1微放電加工原理…………………………………………..……………….7 2-1-1微放電加工之材料去除機制………………………………….….……..8 2-1-2微放電加工的特點………………………………………….…………10 2-2微細放電鑽孔…………………………………………………………….11 2-2-1細孔放電加工之電極運轉模式………………………………………..11 2-2-2電極選用對微孔表面粗糙度的影響…………………………………..13 2-3擠製成型原理…………………………………………………………….14 2-3-1擠製材料的選用………………………………………………………..14 2-3-2擠製成型方法…………………………………………………………..16 2-4金屬沉積基本原理……………………………………………………….20 2-4-1金屬沉積原理與應用…………………………………………………..21 2-4-2金屬複合沉積原理與應用……………………………………………..23 2-4-3沉積液成份及其功能…………………………………………………..25 第三章 實驗設備與設計…………………………………………………...27 3-1複合式CNC微型加工機………………………..……….………………27 3-1-1微孔加工機能…………………………………………………………..28 3-1-2電極短路退離機制…...………………………………………………...29 3-1-3 銅管電極夾持裝置…………………………………………………….31 3-2精微擠製裝置設計……………………………………………………….32 3-3金屬沉積………………………………………………………………….33 3-3-1沉積裝置設計…………………………………………………………..33 3-3-2金屬沉積治具設計……………………………………………………..36 3-4量測設備………………………………………………………………….37 3-4-1工具顯微鏡(OM)……………...………………………………………..37 3-4-2掃描式電子顯微鏡(SEM)….…………………………………………..37 3-4-3白光干涉量測儀………………………………………………………..38 3-5支援之實驗加工設備…………………………………………………….38 3-5-1線切割放電加工機……………………………………………………..39 第四章 實驗方法…………………………………………………………...40 4-1銅管偏擺對微孔精度影響……………………………………………….41 4-1-1銅管夾持之精度影響…………………………………………………..41 4-1-2銅管懸量對孔精度影響………………………………………….…….43 4-1-3結果與討論……………………………………………………………..45 4-2放電能量對粗糙度、加工時間及銅管消耗影響……………………….45 4-2-1放電能量對孔壁粗糙度的影響………………………………………..46 4-2-2放電能量對加工時間及銅管消耗的影響……………………………..48 4-2-3結果與討論……………………………………………………………..48 4-3放電鑽孔之進給速率對加工時間的影響……………………………….49 4-3-1進給速率對加工時間的影響…………………………………………..49 4-3-2結果與討論……………………………………………………………..51 4-4蠟擠製溫度實驗………………………………………………………….51 4-4-1軟化溫度對蠟擠製的影響………………………………………….51 4-4-2結果與討論……………………………………………………………..54 4-5擠製之模具厚度選擇…………………………………………………….54 4-5-1擠製模具受力變形模擬………………………………………………..54 4-5-2模具厚度對蠟柱形貌影響……………………………………………..56 4-5-3結果與討論……………………………………………………………..57 4-6蠟擠製方向實驗………………………………………………………….57 4-6-1擠製方向對蠟柱成型的影響…………………………………………..58 4-6-2結果與討論……………………………………………………………..59 4-7擠製模之孔錐率對蠟柱形貌的影響…………………………………….59 4-7-1進給深度對微孔錐率大小的影響……………………………………..60 4-7-2模具孔錐率大小對蠟柱形貌的影響…………………………………..63 4-7-3結果與討論………………………………………………………...…...65 第五章 陣列微孔沉積成型驗證…………………………………………...66 5-1陣列微孔加工…………………………………………………………….66 5-1-1陣列微孔孔徑量測……………………………………………………..67 5-2陣列微型蠟柱擠製..…………………………………………………….68 5-3沉積完成之製品………………………………………………………….69 5-3-1成品微孔孔徑量測……………………………………………………..72 5-3-2成品微孔錐度量測…………………………………………………..…73 第六章 結論………………………………………………………………….75 6-1結果……………………………………………………………………….75 6-2未來展望………………...………………………………………………..77 參考文獻……………………………………………………………………….78 圖目錄 圖1-1 陣列微孔製作流程比較……………………………………………….2 圖1-2 陣列微孔製作流程…………………………………………………….4 圖2-1 微放電加工材料去除機制…………………………………………….9 圖2-2 行星式放電加工……………………………………………………...12 圖2-3 細孔放電加工………………………………………………………...12 圖2-4 實心與空心電極加工前後比較……………………...………………14 圖2-5 直接擠製示意圖……………………………………………………...17 圖2-6 間接擠製示意圖……………………………………………………...18 圖2-7 高溫潤滑擠製示意圖………………………………………………18 圖2-8 連續擠製示意圖……………………………………………………...19 圖2-9 靜水壓擠製示意圖……..……………………………………………..20 圖2-10 金屬沉積架構圖…………………………………………………..21 圖2-11 金屬複合沉積原理示意圖…………….……………………………23 圖2-12 Guglielmi沈積機制……………..……………………………………24 圖2-13 Celis沈積機制………………..………………………………………25 圖3-1 精密微型CNC複合製造系統之製程與功能……...………………...27 圖3-2 精密微型CNC複合製造系統……………..…………………………28 圖3-3 啄鑽模式下的電極短路退離機制………………………………..….29 圖3-4 短路退刀(Retrace)程序………….………………..…………………30 圖3-5 精密電極夾持裝置………………………….………………………..31 圖3-6 精密之蠟擠製裝置…………….……………………………………..32 圖3-7 溫度控制器及內部電路………………...……………………………33 圖3-8 精密沉積裝置…………………...…………………………………....34 圖3-9 沉積槽之溫度控制與耐酸鹼泵…………...………………………....35 圖3-10 電源供應器實體圖………….………………………..……………..36 圖3-11 金屬沉積治具……………….………………………………………36 圖3-12 工具顯微鏡及規格………….………………………………………37 圖3-13 掃描式電子顯微鏡……………………………………………….…38 圖3-14 白光干涉儀及規格………………………………………………….38 圖3-15 CNC線切割放電加工機.…………..…………………..……………39 圖4-1 實驗流程圖……………...…………………………………………....40 圖4-2 不同管徑之銅管接合圖……………………………………………...41 圖4-3 銅管夾持….…………………………………………………………..42 圖4-4 微孔加工比較………………………………………………………...43 圖4-5 銅管拘束及銅管懸量示意圖………….….………………………….44 圖4-6 懸量長度(35~60mm)..………………………………………………..44 圖4-7 懸量長度(60mm以上)……..………………………………………...45 圖4-8 放電能量改變對孔壁粗糙度的影響……….……………………….47 圖4-9 能量改變對加工時間及銅管消耗的影響…………..……………….48 圖4-10 不同進給速度下所得成果………………..………….……..………50 圖4-11 進給速度的影響…………….………………………………………51 圖4-12 擠製溫度對蠟柱外貌的影響…………….…………………………53 圖4-13 蠟柱底部蠟圈比較………………..………………...………………54 圖4-14 壓力0.34 Mpa板厚變形模擬………………….……………………55 圖4-15 模擬壓力1 MPa板厚變形…………………………………………56 圖4-16 模具厚度對蠟柱成型的影響………………….……………………56 圖4-17 錐度擠製示意圖………….…………………………………………57 圖4-18 正負擠製比較圖……………………..…………………………..….59 圖4-19 進深加工和進給深度圖…………………………………………….60 圖4-20 進給深度改變的正背面微孔圖…………….………………………61 圖4-21 正背面孔徑比較圖……………...……………………………..……62 圖4-22 微孔錐率圖…………………..……….….…….…….……...………63 圖4-23 錐度擠製圖………………………………….…….………..…….…64 圖5-1 陣列微孔模具圖……………………………………………………...67 圖5-2 微孔孔徑量測….………..….………………………………………...68 圖5-3 蠟柱擠製成型圖……………………………………………………...68 圖5-4 沉積試片……………………………………………………………...71 圖5-5 複合金屬沉積比較…………………………………………………72 圖5-6 沉積成品正背面比較…………………………….…………………..73 圖5-7 陣列微孔錐度……………………………………………….………74 表目錄 表1-1 微細加工與微影製程技術比較……………………………….………2 表2-1 微放電加工與一般雕模放電加工之特性比較…………….…………7 表3-1 複合沉積設備規格表…………………………………………….…..34 表3-2 線割機規格表………………………………………………….……..39 表4-1 深孔放電加工機參數………………………………………………...42 表4-2 複合加工機參數……………………………………………………...42 表4-3 實驗參數表………...……………………………………….………...46 表4-4 放電和進給速度實驗參數表………………………………….….….49 表4-5 各溫度蠟柱比較表…………………………………………………...53 表4-6 加工參數表…………………………………………………………...60 表4-7 錐度對蠟柱形貌的影響…………….…..………………….………...65 表5-1 陣列微孔加工參數…………...……………………………………....66 表5-2 擠製加工參數………………………………………………….……..69 表5-3 沉積液組成及沉積參數表…………………………………………...70 符號表 d:沉積厚度 (mm) t:沉積時間 (min) η:電流效率 (%) z:電子數 F:法拉第常數 (9.6485×104 Coul /mole) ρ:金屬密度 (g/cm3) M:分子量 j:電流密度 (ASD) A:銅管懸量 (mm) f:進給速度 (mm/min) B:進給深度 (mm) x:不銹鋼板厚度 (mm) δmax:最大變形量 (µm) C:銅管消耗量 (µm) R:錐度修整距離 (mm)

    [1] J. H. Tsai, L. Lin, A thermal bubble actuated micro Nozzle-Diffuser pump, Proceedings of 2001 IEEE Micro Electro Mechanical Systems Workshop, 2001, pp.409-412.
    [2] http://www.whbest.com.tw/goodsfiles/wb16a_cql.pdf
    [3] S. Bohm, W. Olthuis, P. Bergveld, A plastic micro pump constructed with conventional techniques and materials, Sensors and Actuators Vol. 77, 1999, pp.223-228.
    [4] 沈聖智,王郁仁,程榮聖,鄧吉雄,葉建賢,李聰瑞,蔡明杰,"微機電式霧化器之研發與應用",機械工業雜誌,282期。
    [5] J. G. Zhou, A. Addison, F. Wang, Z. He, Liquid deposition process for microstructure fabrication, Materials and Design Vol.26, 2005, pp.670-679.
    [6] Z. Sun, R. Han, Numerical Studies on nano-particle Removal with micro-droplet Spray, Nano/Micro Engineered and Molecular Systems, NEMS '06. 1st IEEE International Conference, 2006, pp.303-305.
    [7] N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, Y. Takata, Y. Tanaka, K. Inoue, K. Asakawa, Precise control of dry etching for nanometer scale air-hole arrays in two-dimensional GaAs/AlGaAs photonic crystal slabs, Optics Communications, 275, 2007, pp.257-267.
    [8] F. O. Olsen, L. Alting, Pulsed laser materials processing, Nd: YAG versus CO2 lasers, Annals of the CIRP, Vol. 44, 1995, pp.141-145.
    [9] L. Sanchez, F. G. Solana, D. Pesquera, Fatigue behavior of punched structural plates, Engineering Failure Analysis, 2004, pp.751-764.
    [10] S. S. Kim, C. S. Han, Y. S. Lee, Development of a new burr-free hydro-mechanical punching, Journal of Materials Processing Technology, 2005, pp.524-529.
    [11] S. T. Chen, A high-efficiency approach for fabricating mass micro holes by batch micro EDM, Journal of Micromechanics and Microengineering, 2007, pp.1961-1970.
    [12] S. T. Chen, H. Y. Yang, Y. C. Tasi, Yunn-Shiuan Liao, A novel approach to fabricate super high aspect ratio micro channels, Proceedings of the 24th National Conference on Mechanical Engineering, Chung-Li, Taiwan, 2007, pp.4303-4308
    [13] D. M. Allen, A. Lecheheb, Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters, Journal of Material Processing Technology, 1996, pp.53-66.
    [14] C. L. Kuo, T. Masuzawa, M. Fujino, High precision micro nozzle Fabrication Process, Proc. Of MEMS, 1992, pp.116-121.
    [15] V. Lehmann, U. Gruning, The limits of macropore array fabrication, Thin Solid Films, 1997, pp.13-17.
    [16] S. Shingubara, O. Okino, K. Nakaso, H. Sakaue, T. Takahagi, Fabrication of nano holes array on si substrate using anodically oxidized aluminum etching mask, 1999, pp124-125.
    [17] N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, Y. Takata, Y. Tanka, K. Inoue, K. Asakawa, Precise control of dry etching for nanometer scale air hole arrays in two dimensional GaAs/AlGaAs photonic crystal slabs, ScienceDirect, 2007, pp257-267.
    [18] C. Y. Chang, S. Y. Yang, Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro holes array and UV-curable polymer, OPTICS EXPRESS, 2006, Vol.14, No.13, pp.6253-6258.
    [19] T. Shibata, S. Yamanaka, N. Kato, T. Kawashima, M. Nomura, T. Mineta, E. Makino, Fabrication of micromanipulator array for cell patterning, Microelectronic Engineering, 2009, pp1-4.
    [20] C. Y. Chang, S. Y. Yang, J. L. Sheh, A roller embossing process for rapid fabrication of microlens arrays on glass substrates, Technical Paper, 2006, pp.754-759.
    [21] K. H. Ho, S. T. Newman, State of the art electrical discharge machining (EDM), International Journal of Machine Tools & Manufacture, 2003, pp.1287-1300.
    [22] E. J. Weller, Nontraditional machining Processes, Society of Manufacturing Engineers, 1983.
    [23] F.T. Weng, M.H. Her, Study of the batch production of micro parts using the EDM process, International Journal of Advanced Manufacturing Technology, 2002, pp.266-270.
    [24] N. Mohri, H. Takezawa, K. Furutani, Y. Ito, T. Sata, A new process of additive and removal machining by EDM with a thin electrode, Annals of the CIRP, Vol.49, 2000, pp.123-126.
    [25] H. S. Liu, B. H. Yan, F. Y. Huang, K. H. Qin, A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications, Journal of Material Processing Technology, 2005, pp.418-426.
    [26] 翁豐在,"放電加工用途奈米微電極之製造",中國機械工程學會第23屆全國學術論文研討會,2006,pp.1-4。
    [27] S. T. Chen, A high-efficiency approach for fabricating mass micro holes by batch micro EDM, Journal of Micromechanics and Microengineering, 2007, pp.1961-1970.
    [28] W. Meeusen, D. Reynaerts, J. Peirs, H. V. Brussel, V. Dierickx, W. Driesen, The machining of freeform micro moulds by micro EDM; work in progress, 2000.
    [29] K. Takahata, N. Shibaike, H. Guckel, A novel micro electro-discharge machining method using electrodes fabracated by the LIGA process, IEEE, 1999, pp.238-243.
    [30] K. Takahata, Y.B. Gianchandani, batch mode micro-electro-discharge-machining, Journal of Microelectromechanical Systems, Vol.11, No.2, 2002, pp.102-110
    [31] 陳席卿,"雷射原理與光電檢測",全華科技圖書股份有限公司,2001,pp.2-53、134-137。
    [32] W. M. Steen, Laser material processing springer-verlag, London, 1991.
    [33] S. M. Huang, Z. Sun, Y. F. Lu, Nano fabrication by laser irradiation of polystyrene particle layers on silicon, IOP, 2007, 2007, pp.1-7.
    [34] 陳鴻隆,"紫外光雷射雕刻的技術與應用",機械技術雜誌,2000,pp.92-98。
    [35] T. E. Lizotte, Scratching the surface, PT DESIGN, 1999, pp.41-44.
    [36] X. Chaud, D. Isfort, L. Porcar, R. Tournier, Growth of YBCO single domains through an array of holes for FCL c-axis superconducting elements, Journal of the European Ceramic Society, 2005, pp.2955-2958.
    [37] 梁輝源,"微放電與微衝壓複合加工於矩陣式微孔製作",國立雲林科技大學碩士論文,2003。
    [38] S. H. Rhim, Y. K. Son, S. I. Oh, Punching of ultra small Size hole array, CIRP Annals-Manufacturing Technology, 2005, pp.261-264.
    [39] 機械技術雜誌編輯部,"二十一世紀的顯學微機電系統(四)-微放電精密加工",機械技術雜誌,2000,pp.220-222。
    [40] 廖運炫,"放電加工之發展趨勢與研究現況",機械月刊,Vol.301,2000, pp.374-387。
    [41] 吳裕民,"微放電加工機之微電極加工自動控制",國立雲林科技大學碩士論文,2000。
    [42] Reference manual, Charmilles technologies robfil 300, 1993, pp.1.1.4-1.1.5.
    [43] 李少濠,劉洛瑩,王文樑,白東鑫,"淺談精密擠壓技術之發展與應用",鍛造,Vol.12, No.2,2003,pp.30-33。
    [44] T. Besshi, T. Sato, M. Matsui, T. Tanaka, I. Tsutsui, The extrusion of alumina composite billets, Journal of Materials Processing Technology, 2000, pp.47-52.
    [45] 陳順同,楊弘意,蔡岳璋,"以精密電鑄脫蠟技術開發超高細長比微流道",中國機械工程學會第二十四屆全國學術研討會論文集,2007,pp.1-6。
    [46] Y. S. Ha, J. R. Cho, T. H. Kim, J. H. Kim, Finite element analysis of rubber extrusion forming process for automobile weather strip, Journal of Materials Processing Technology, 2007, pp.1-8.
    [47] 黃德福,"複合材擠製之研究",國立中山大學碩士論文,2002,pp.1-5。
    [48] E. M. Mielnik, Metalworking Science and Engineering, McGraw-Hill, 1993.
    [49] 李榮顯,"塑性加工學",三民書局,1996。
    [50] K. Osakada, M. Limb, P. B. Mellor, Hydrostatic extrusion of composite rods with hard cores, International Journal of Mechanical Sciences, Vol.15, 1973, pp.291-307.
    [51] 蘇癸陽編,"實用電鍍理論與實際",復文出版社,1999。
    [52] J. Brockris, D. M. Drazie, Electro-chemical science, Taylor and Francis Ltd, London, 1972.
    [53] M. D. Vogelaere, V. Sommer, H. Springborn, U. M. Mohammadein, High-speed plating for electronic applications, 2001, pp. 109-116.
    [54] 沈寧一等,"表面處理工藝手冊",上海科學技術出版社,1991,pp.257-273。
    [55] 佐藤敏一,"特殊加工",復漢出版社,1994,pp.188-207。
    [56] S. T. Chen, Y. C. Lai, C. C. Liu, Fabrication of a miniature diamond grinding tool using a hybrid process of micro-EDM and co-deposition, Journal of Micromechanics and Micromechanics and Microengineering, 2008, pp.1-8.
    [57] N. Gulielmi, Kinetics of the Deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, 1972, pp.1009-1012.
    [58] J. P. Celis, J. R. Roos, C. Buelens, A Mathemetical Model for the electrolytic codeposition of particles with a metallic matrix, Journal of Electrochemical Society, Vol. 134, 1987, pp.1402-1408.
    [59] 陳順同,楊弘意,蔡岳璋,張智賢,范聖尉,杜致緯,賴運正,劉慶昌,林憲志,"精密微型CNC複合製造系統開發",產學合作計成果發表專刊,2008,pp.1-2。
    [60] T. Masuzawa, M. Fujino, K. Kobayashi and T. Suzuki, Wire electro-discharge grinding for micro-machining, Annals of the CIRP, 1985, 431-434.
    [61] S. T. Chen, A high-efficiency approach for fabricating mass micro holes by batch micro EDM, Journal of Micromechanics and Micromechanics and Microengineering, 2007, pp.1961-1970.
    [62] 姜不居,"熔模精密鑄造",機械工業出版社,2004,pp.24-25
    [63] 張印本,楊良太,嚴世明,"ASTM金屬材料規格與對造",金華科技圖書股份有限公司,2001,pp.46。
    [64] 程曜,許博淵,郭佳儱,曾世昌,康尚文,史望平,王施勝,黃光治,模造法紡口製程,中華民國專利公報393359號,2000。

    下載圖示
    QR CODE