簡易檢索 / 詳目顯示

研究生: 李若屏
Jo-Ping Lee
論文名稱: 年齡與運動對於腦部血管新生路徑與發炎指標的效應
Age and exercise effects on brain angiogenic pathway and inflammatory factors
指導教授: 方進隆
Fang, Chin-Lung
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: 運動挑戰老化血管新生因子
英文關鍵詞: exercise challenge, aging, angiogenic factors
論文種類: 學術論文
相關次數: 點閱:153下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    目的:研究一為分析大腦組織中血管新生機制於兩週運動訓練過程的變化;研究二為觀察單次運動對於高齡大腦血管新生機制之影響;研究三為觀察兩週運動訓練對於大腦血管新生機制之影響。方法:研究一使用3個月齡之雄性SD鼠,進行兩週且每天90分鐘的運動,收集動作皮層和海馬回組織的時間包括運動前(n=6)以及運動第1天(n=6)、第7天(n=6)和第14天(n=6)後一小時。研究二將使用3個月和12個月齡之雄性SD鼠,分為年輕控制組(YC,n=6)、年輕運動組(YE,n=6)、老年控制組(OC,n=6)和老年運動組(OE,n=6),並於90分鐘單次游泳運動後1小時進行組織收集。研究三進行長期運動訓練,以與研究二相同的組別設計於兩週游泳運動後隔天收集組織。分析指標包括微血管密度、血管內皮生長因子(VEGF)、VEGF接受器-2 (Flk-1)、VEGF接受器-1 (Flt-1)、angiopoietin-1 (Ang1)和angiopoietin-2 (Ang 2)與Tie2、eNOS、糖化產物接受器(RAGE)、巨噬細胞標的蛋白(CD68)、超氧化物歧化酶(SOD1)以及第1類型葡萄糖轉運蛋白(GLUT1)之表現量。結果:研究一發現動作皮層區VEGF、Ang1和eNOS於運動第1天顯著增加後便回復至運動前水準,其接受器Flt-1和Tie2則分別於運動第1和7天後顯著增加並持續至第14天,而CD68於運動第1至14天均顯著增加,動作皮層區之微血管密度於運動第7天顯著減少而第14天又回升;海馬回區之VEGF、Flt-1和Ang1 以及CD68、SOD1和GLUT1於運動第1天期間內顯著增加後便回復至運動前水準,海馬回之微血管密度於兩週運動期間無顯著變化。研究二發現OC組動作皮層區及海馬回區之SOD1均顯著高於YC組,且僅OC組動作皮層區之Flk-1 mRNA以及Flt-1、eNOS、Ang1和CD68蛋白表現均顯著高於YC組,而這些差異並無出現於海馬回;OE組與OC組之血管新生因子和發炎指標均無顯著差異。研究三發現兩週運動後,YE組之兩腦區血管新生因子和發炎指標與YC組多無顯著差異,OE與OC組之比較亦獲得相同結果,僅YE組和OC組動作皮層之CD68均顯著高於YC組,以及OE組海馬回之CD68顯著高於OC組;YE組於動作皮層和海馬回之微血管密度均顯著高於YC組,OE組之CD31呈色亦有高於OC組之趨勢,而OC組的AP和CD31呈色均顯著低於YC組僅出現於海馬回區域。結論:本研究顯示兩週且每日90分鐘之游泳運動有助於腦部血管網路的汰換,且海馬回的血管新生因子相較於動作皮層區具有較快的調適反應,然海馬回區域相較於動作皮層區提早出現血管網路的退化,而兩週游泳運動訓練可引致年輕腦部之血管新生,亦可能對於中老年腦部血管結構具正面效應。

    Abstract
    Purposes: Study I was to examine the time-course changes in brain angiogenic mechanism during 2-week exercise; study II to determine acute exercise effect on brain angiogenic mechanism for the middle-aged; and study III to investigate the effect of 2-week exercise on brain angiogenic mechanism. Methods: Study I recruited 3 months old male SD rats to 14-day swimming exercise for 90 minutes/day. Tissues from motor cortex and hippocampus were collected pre-exercise (n=6) and after 1 hour post-exercise at day 1(n=6), day 7 (n=6) and day 14 (n=6). Study II assigned 3 and 12 months old male SD rats to young control (YC, n=6), young exercise (YE, n=6), old control (OC, n=6) and old exercise (OE, n=6) groups. Tissues were collected within 1 hour after one single-bout swimming for 90 minutes. Study III included the same group design as Study II and tissues were collected on the next day after 2-week swimming program. Measurements included capillary density, the expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 (Flk-1), VEGF receptor-1 (Flt-1), angiopoietin-1 (Ang1), angiopoietin-2 (Ang2), Tie2, eNOS, receptor for AGE (RAGE), macrophage marker (CD68), superoxide dismutae (SOD1) and glucose transportor-1 (GLUT1). Results: Study I founded that VEGF, Ang1 and eNOS expression were significantly higher post exercise at day 1 and then returned to pre-exercise level. Their receptors were significantly higher post exercise at day 1 or 7 and then remained to day 14. CD68 was significantly higher post exercise during day 1 to 14. Capillary density in motor cortex was significantly lower post exercise at day 7 and then returned at day 14. For hippocampus, VEGF, Flt-1 and Ang1as well as SOD1, CD68 and GLUT1 were significantly higher post exercise at day 1 and then returned to pre-exercise level. No significant changes in capillary density were noted in hippocampus during 2-week exercise. Study II founded that significantly higher SOD1 was noted in OC motor cortex and hippocampus than YC. Also, higher Flk-1 mRNA and the protein expression of Flt-1, eNOS, Ang1 and CD68 were noted only in OC motor cortex than YC but not hippocampus. No significantly difference of angiogenic and inflammatory factors was noted between OE and OC. Study III denoted that no significantly difference of most angiogenic and inflammatory factors in both brain areas was found between YE and YC after 2-week exercise. The same results came to the comparison between OE and OC. Only significantly greater CD68 was founded in YE and OC motor cortex comparing to YC as well as in OE hippocampus comparing to OC. Further, capillary density in YE motor cortex and hippocampus were significantly higher than YC. Meanwhile, CD31-positive stain tended to be higher in OE than OC. Only for hippocampus, both AP and CD31-positive stains were significantly lower in OC comparing to YC. Conclusions: These findings suggested that 2-week swimming exercise with 90 minutes per day may cause turnover in vascular network. Angiogenic factors in hippocampus had rapid adaptation rather than motor cortex in response to exercise, while the early onset of degeneration in vascular network was noted in hippocampus prior to motor cortex. Additionally, 2-week swimming exercise can enhance angiogenesis for young brain and might have positive effect on vascular structure for middle-aged.

    目次 中文摘要……………………………………………………………………………………..iii 英文摘要………………………………………………………………………………….…..v 謝誌…………………………………………………………………………………………..vii 目次……………………………………………………………………………………...…..viii 表次…………………………………………………………………………………………...x 圖次……………………………………………………………………………………….…..xi 第壹章 緒論 第一節 研究背景…………………………..………….……………………..……………….1 第二節 研究目的…………………………………………………..………………..……… .4 第三節 研究假設…………………………………………………..…………………….… ..5 第四節 研究限制…………………………………………………..…………………….…. .5 第五節 研究重要性………………………………………………..…………………….… ..6 第貳章 文獻探討 第一節 血管病變與血管新生不良為慢性疾病之重要病因……………...…..…….......…..8 第二節 血管新生的機制與重要性……………...………….………...……..…….………...11 第三節 血管新生因子間的合作……………………………………...……..……….……...13 第四節 年齡對血管新生因子的影響………………………………...……..….…………...15 第五節 運動對血管新生因子的效應……………………………….……..…..................…17 第六節 運動對於老化組織的血管新生能力之效果……………...……….............…….....19 第七節 總結…………………………………………………………………..……..……….20 第參章 方法 第一節 動物受試者……………………………………..…………………………..…….....22 第二節 測試流程………………………………………..…………………………………..23 第三節 組織處理方式與分析指標………………………..……………………………..…25 第四節 分析方式與步驟…………………………………..……………………………..…26 第五節 資料分析……………………………………………..……………………………..30 第肆章 結果 研究一:不同腦區血管新生路徑和發炎指標於運動過程中之時序性變化......................32 研究二:單次運動對年輕和中老年腦部血管新生路徑和發炎指標的效應......................33 研究三:年齡與運動訓練對於腦部血管新生路徑和發炎指標之影響..............................35 第伍章 討論 研究一:不同腦區血管新生路徑和發炎指標於運動過程中之時序性變化......................37 研究二:單次運動對年輕和中老年腦部血管新生路徑和發炎指標的效應......................45 研究三:年齡與運動訓練對於腦部血管新生路徑和發炎指標之影響..............................52 第陸章 結論與建議 第一節 結論………………………..…………………..…………………………..……......57 第二節 建議………………………………...…………..……………………………….…..58 引用文獻……………………………..……………………………………..…….….….…...60 表次 表一、受試老鼠於(A)研究一、(B)研究二和(C)研究三的體重、腦重、腦重百分比、脂肪重和脂肪重百分比。…………………………………………….………………………….72 圖次 圖一、研究二之年輕受試鼠和高齡受試鼠之葡萄糖耐受度測試曲線,包括(A)血糖以及(B)胰島素之曲線。………………………………………………………………………….….73 圖二、研究三之年輕運動組和高齡運動組於運動前後之葡萄糖耐受度測試曲線,包括(A)血糖以及(B)胰島素之曲線。………………………………..…….…………………….….74 圖三、動作皮層區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於兩週運動過程中的時序性變化。………………………………………………..75 圖四、海馬回區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於兩週運動過程中的時序性變化。………………………………………………..76 圖五、動作皮層區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT1之蛋白表現量於兩週運動過程中的時序性變化。…………………………………………………………………………..77 圖六、海馬回區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT1之蛋白表現量於兩週運動過程中的時序性變化。………………………………....…………………………………………..…83 圖七、(A)動作皮層和(B)海馬回區域於運動過程中血管型態之時序性變化。……..….89 圖八、動作皮層區域於運動過程中微血管密度之時序性變化,(A)動作皮層區域之AP染色以及(B)動作皮層區域之CD31免疫染色。………………………………………….....90 圖九、海馬回區域於運動過程中微血管密度之時序性變化,(A)海馬回區域之AP染色以及(B)海馬回區域之CD31免疫染色。……………………………………………….……91 圖十、年輕與高齡組之動作皮層區(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於單次運動後的變化。……………………...……………..…..92 圖十一、年輕與高齡組之海馬回區(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於單次運動後的變化。………………………………...………93 圖十二、動作皮層區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT1之蛋白表現量於年輕無運動組(Young non-exercise, YC)、年輕單次運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡單次運動組(Old exercise, OE)之變化。………………..…….....94 圖十三、海馬回區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT之蛋白表現量於年輕無運動組(Young non-exercise, YC)、年輕單次運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡單次運動組(Old exercise, OE)之變化。………………….….…100 圖十四、年輕與高齡組之動作皮層區(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於兩週運動後的變化。……………………………………......106 圖十五、年輕與高齡組之海馬回區(A) VEGF、(B) Flk-1、(C) Flt-1、(D) Ang1、(E) Ang2和(F) Tie2 mRNA表現量於兩週運動後的變化。………………………………………..107 圖十六、動作皮層區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT1之蛋白表現量於年輕無運動組(Young non-exercise, YC)、年輕運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡運動組(Old exercise, OE)之變化。………………………….…108 圖十七、海馬回區中(A) VEGF、(B) Flk-1、(C) Flt-1、(D) eNOS、(E) Ang1、(F) Tie2、(G) Ang2、(H) RAGE、(I) SOD1、(J) CD68、(K) GLUT1之蛋白表現量於年輕無運動組(Young non-exercise, YC)、年輕運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡運動組(Old exercise, OE)之變化。………………………….…114 圖十八、(A)動作皮層區和(B)海馬回區中血管型態於年輕無運動組(Young non-exercise, YC)、年輕運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡運動組(Old exercise, OE)之變化。……………………………………………………………..120 圖十九、動作皮層區中(A) AP染色以及(B) CD31免疫染色所呈現之微血管密度於年輕無運動組(Young non-exercise, YC)、年輕運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡運動組(Old exercise, OE)之變化。……………………….…....121 圖二十、海馬回區中(A) AP染色以及(B) CD31免疫染色所呈現之微血管密度於年輕無運動組(Young non-exercise, YC)、年輕運動組(Young exercise, YE)、高齡無運動組(Old non-exercise, OC)和高齡運動組(Old exercise, OE)之變化。…………………….…........122

    Amaral, S. L., Sanchez, L. S., Chang, A. J., Rossoni, L. V., & Michelini, L. C. (2008). Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats. Brazilian Journal of Medicine Biological Research, 41(5), 424-431.

    Atwood, C. S., Bowen, R. L., Smith, M. A., & Perry, G. (2003). Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. Brain Research. Brain Research Review, 43(1), 164-178.

    Baffert, F., Thurston, G., Rochon-Duck, M., Le, T., Brekken, R., & McDonald, D. M. (2004). Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circulation Research, 94(7), 984-992.

    Beck, H., Acker, T., Wiessner, C., Allegrini, P. R., & Plate, K. H. (2000). Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. American Journal of Pathology, 157(5), 1473-1483.

    Bloor, C. M. (2005). Angiogenesis during exercise and training. Angiogenesis, 8(3), 263-271.

    Brandes, R. P., Fleming, I., & Busse, R. (2005). Endothelial aging. Cardiovascular Research, 66(2), 286-294.

    Bucala, R., Tracey, K. J., & Cerami, A. (1991). Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. Journal of Clinical Investigation, 87(2), 432-438.

    Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., et al. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36(8), 827-835.

    Carlevaro, M. F., Cermelli, S., Cancedda, R., & Descalzi Cancedda, F. (2000). Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. Journal of Cell Science, 113 ( Pt 1), 59-69.

    Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380(6573), 435-439.

    Cheluvappa, R., Hilmer, S. N., Kwun, S. Y., Jamieson, H. A., O'Reilly, J. N., Muller, M., et al. (2007). The effect of old age on liver oxygenation and the hepatic expression of VEGF and VEGFR2. Experimental Gerontology, 42(10), 1012-1019.

    Choeiri, C., Staines, W., & Messier, C. (2002). Immunohistochemical localization and quantification of glucose transporters in the mouse brain. Neuroscience, 111(1), 19-34.

    Choi, J., Rees, H. D., Weintraub, S. T., Levey, A. I., Chin, L. S., & Li, L. (2005). Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. Journal of Biological Chemistry, 280(12), 11648-11655.

    Clark, P. J., Brzezinska, W. J., Puchalski, E. K., Krone, D. A., & Rhodes, J. S. (2009). Functional analysis of neurovascular adaptations to exercise in the dentate gyrus of young adult mice associated with cognitive gain. Hippocampus, 19(10), 937-950.

    Coggan, A. R., Spina, R. J., King, D. S., Rogers, M. A., Brown, M., Nemeth, P. M., et al. (1992). Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. Journal of Applied Physiology, 72(5), 1780-1786.

    Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2(1), 27-43.

    Crameri, R. M., Langberg, H., Teisner, B., Magnusson, P., Schroder, H. D., Olesen, J. L., et al. (2004). Enhanced procollagen processing in skeletal muscle after a single bout of eccentric loading in humans. Matrix Biology, 23(4), 259-264.

    Croley, A. N., Zwetsloot, K. A., Westerkamp, L. M., Ryan, N. A., Pendergast, A. M., Hickner, R. C., et al. (2005). Lower capillarization, VEGF protein, and VEGF mRNA response to acute exercise in the vastus lateralis muscle of aged vs. young women. Journal of Applied Physiology, 99(5), 1872-1879.

    de la Torre, J. C. (2002). Vascular basis of Alzheimer's pathogenesis. Annals of the New York Academy Sciences, 977, 196-215.

    Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121(Pt 13), 2115-2122.

    Denis, C., Chatard, J. C., Dormois, D., Linossier, M. T., Geyssant, A., & Lacour, J. R. (1986). Effects of endurance training on capillary supply of human skeletal muscle on two age groups (20 and 60 years). Journal of Physiology (Paris), 81(5), 379-383.

    Dennis, R. A., Trappe, T. A., Simpson, P., Carroll, C., Huang, B. E., Nagarajan, R., et al. (2004). Interleukin-1 polymorphisms are associated with the inflammatory response in human muscle to acute resistance exercise. Journal of Physiology, 560(Pt 3), 617-626.

    Desai, B. S., Schneider, J. A., Li, J. L., Carvey, P. M., & Hendey, B. (2009). Evidence of angiogenic vessels in Alzheimer's disease. Journal of Neural Transmission, 116(5), 587-597.

    Devangelio, E., Santilli, F., Formoso, G., Ferroni, P., Bucciarelli, L., Michetti, N., et al. (2007). Soluble RAGE in type 2 diabetes: association with oxidative stress. Free Radical Biology & Medicine, 43(4), 511-518.

    Ding, Y. H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1), 15-23.

    Ding, Y. H., Luan, X. D., Li, J., Rafols, J. A., Guthinkonda, M., Diaz, F. G., et al. (2004). Exercise-induced overexpression of angiogenic factors and reduction of ischemia/reperfusion injury in stroke. Current Neurovascular Research, 1(5), 411-420.

    Donato, A. J., Gano, L. B., Eskurza, I., Silver, A. E., Gates, P. E., Jablonski, K., et al. (2009). Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. American Journal of Physiology. Heart and Circulatory Physiology, 297(1), H425-432.

    Esposito, C., Gerlach, H., Brett, J., Stern, D., & Vlassara, H. (1989). Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. Journal of Experimental Medicine, 170(4), 1387-1407.

    Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C. J., et al. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. European Journal of Neuroscience, 18(10), 2803-2812.

    Feng, Y., Pfister, F., Schreiter, K., Wang, Y., Stock, O., Vom Hagen, F., et al. (2008). Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina. Cellular Physiology and Biochemistry, 21(1-3), 129-136.

    Feng, Y., vom Hagen, F., Pfister, F., Djokic, S., Hoffmann, S., Back, W., et al. (2007). Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thrombosis and Haemostasis, 97(1), 99-108.

    Ferrara, N. (1999a). Molecular and biological properties of vascular endothelial growth factor. Journal of Molecular Medicine, 77(7), 527-543.

    Ferrara, N. (1999b). Vascular endothelial growth factor: molecular and biological aspects. Current Topics in Microbiology and Immunology, 237, 1-30.

    Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrine Review, 25(4), 581-611.

    Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K. S., et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573), 439-442.

    Firbank, M. J., Wiseman, R. M., Burton, E. J., Saxby, B. K., O'Brien, J. T., & Ford, G. A. (2007). Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure. Brain atrophy, WMH change and blood pressure. Journal of Neurology, 254(6), 713-721.

    Fleming, I., & Busse, R. (1999). NO: the primary EDRF. Journal of Molecular and Cellular Cardiology, 31(1), 5-14.

    Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66-70.

    Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), 1032-1039.

    Fujiwara, K. (2006). Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells. Journal of Internal Medicine, 259(4), 373-380.

    Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., McClain, J., et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Developmental Cell, 3(3), 411-423.

    Gavin, T. P., Drew, J. L., Kubik, C. J., Pofahl, W. E., & Hickner, R. C. (2007). Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiologica (Oxf), 191(2), 139-146.

    Gavin, T. P., Ruster, R. S., Carrithers, J. A., Zwetsloot, K. A., Kraus, R. M., Evans, C. A., et al. (2007). No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. Journal of Physiology, 585(Pt 1), 231-239.

    Gavin, T. P., Westerkamp, L. M., & Zwetsloot, K. A. (2006). Soleus, plantaris and gastrocnemius VEGF mRNA responses to hypoxia and exercise are preserved in aged compared with young female C57BL/6 mice. Acta Physiologica (Oxf), 188(2), 113-121.

    Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5(6), 623-628.

    Gertz, K., Priller, J., Kronenberg, G., Fink, K. B., Winter, B., Schrock, H., et al. (2006). Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circulation Research, 99(10), 1132-1140.

    Goodyear, L. J., Hirshman, M. F., & Horton, E. S. (1991). Exercise-induced translocation of skeletal muscle glucose transporters. American Journal of Physiology, 261(6 Pt 1), E795-799.

    Goodyear, L. J., Hirshman, M. F., Smith, R. J., & Horton, E. S. (1991). Glucose transporter number, activity, and isoform content in plasma membranes of red and white skeletal muscle. American Journal of Physiology, 261(5 Pt 1), E556-561.

    Gottfried, E., Kunz-Schughart, L. A., Weber, A., Rehli, M., Peuker, A., Muller, A., et al. (2008). Expression of CD68 in non-myeloid cell types. Scandinavian Journal of Immunology, 67(5), 453-463.

    Greenberg, D. A., & Jin, K. (2005). From angiogenesis to neuropathology. Nature, 438(7070), 954-959.

    Gustafsson, T., Knutsson, A., Puntschart, A., Kaijser, L., Nordqvist, A. C., Sundberg, C. J., et al. (2002). Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Archiv, 444(6), 752-759.

    Gustafsson, T., & Kraus, W. E. (2001). Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Frontiers in Bioscience, 6, D75-89.

    Gustafsson, T., & Sundberg, C. J. (2000). Expression of angiogenic growth factors in hum,an skeletal muscle in response to a singular bout of exercise. American Journal of Physiology. Heart and Circulatory Physiology, 279(6), H3144-3145.

    Haas, T. L. (2002). Molecular control of capillary growth in skeletal muscle. Canadian Journal of Applied Physiology, 27(5), 491-515.

    Haigh, J. J., Morelli, P. I., Gerhardt, H., Haigh, K., Tsien, J., Damert, A., et al. (2003). Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Developmental Biology, 262(2), 225-241.

    Hayashi, T., Abe, K., & Itoyama, Y. (1998). Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. Journal of Cerebral Blood Flow and Metabolism, 18(8), 887-895.

    Hepple, R. T., Mackinnon, S. L., Goodman, J. M., Thomas, S. G., & Plyley, M. J. (1997). Resistance and aerobic training in older men: effects on VO2peak and the capillary supply to skeletal muscle. Journal of Applied Physiology, 82(4), 1305-1310.

    Hiramatsu, M., Kohno, M., Edamatsu, R., Mitsuta, K., & Mori, A. (1992). Increased superoxide dismutase activity in aged human cerebrospinal fluid and rat brain determined by electron spin resonance spectrometry using the spin trap method. Journal of Neurochemistry, 58(3), 1160-1164.

    Hitomi, Y., Watanabe, S., Kizaki, T., Sakurai, T., Takemasa, T., Haga, S., et al. (2008). Acute exercise increases expression of extracellular superoxide dismutase in skeletal muscle and the aorta. Redox Report, 13(5), 213-216.

    Iemitsu, M., Maeda, S., Jesmin, S., Otsuki, T., & Miyauchi, T. (2006). Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. American Journal of Physiology. Heart and Circulatory Physiology, 291(3), H1290-1298.

    Itoh, H., Ohkuwa, T., Yamamoto, T., Sato, Y., Miyamura, M., & Naoi, M. (1998). Effects of endurance physical training on hydroxyl radical generation in rat tissues. Life Science, 63(21), 1921-1929.

    Jensen, L., Bangsbo, J., & Hellsten, Y. (2004). Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. Journal of Physiology, 557(Pt 2), 571-582.

    Ji, L. L., Dillon, D., & Wu, E. (1990). Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. American Journal of Physiology, 258(4 Pt 2), R918-923.

    Kostic, N., Caparevic, Z., Marina, D., Ilic, S., Radojkovic, J., Cosic, Z., et al. (2009). Clinical evaluation of oxidative stress in patients with diabetes mellitus type II -- impact of acute exercise. Vojnosanitetski Preglgled, 66(6), 459-464.

    Koyama, T., Xie, Z., Gao, M., Suzuki, J., & Batra, S. (1998). Adaptive changes in the capillary network in the left ventricle of rat heart. Japanese Journal of Physiology, 48(4), 229-241.

    Kubes, P., Suzuki, M., & Granger, D. N. (1991). Nitric oxide: an endogenous modulator of leukocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America, 88(11), 4651-4655.

    Kwak, H. J., So, J. N., Lee, S. J., Kim, I., & Koh, G. Y. (1999). Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Letters, 448(2-3), 249-253.

    Lange-Asschenfeldt, C., & Kojda, G. (2008). Alzheimer's disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons. Experimental Gerontology, 43(6), 499-504.

    Lappalainen, Z., Lappalainen, J., Oksala, N. K., Laaksonen, D. E., Khanna, S., Sen, C. K., et al. (2009). Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. Journal of Applied Physiology, 106(2), 461-467.

    Lautenschlager, N. T., Cox, K. L., Flicker, L., Foster, J. K., van Bockxmeer, F. M., Xiao, J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA, 300(9), 1027-1037.

    Lee, J. S., Song, S. H., Kim, J. M., Shin, I. S., Kim, K. L., Suh, Y. L., et al. (2008). Angiopoietin-1 prevents hypertension and target organ damage through its interaction with endothelial Tie2 receptor. Cardiovascular Research, 78(3), 572-580.

    Leosco, D., Rengo, G., Iaccarino, G., Sanzari, E., Golino, L., De Lisa, G., et al. (2007). Prior exercise improves age-dependent vascular endothelial growth factor downregulation and angiogenesis responses to hind-limb ischemia in old rats. Journal of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(5), 471-480.

    Lim, H. S., Blann, A. D., Chong, A. Y., Freestone, B., & Lip, G. Y. (2004). Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes: implications for cardiovascular risk and effects of multifactorial intervention. Diabetes Care, 27(12), 2918-2924.

    Lim, H. S., Lip, G. Y., & Blann, A. D. (2005). Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis, 180(1), 113-118.

    Liu, X. B., Jiang, J., Gui, C., Hu, X. Y., Xiang, M. X., & Wang, J. A. (2008). Angiopoietin-1 protects mesenchymal stem cells against serum deprivation and hypoxia-induced apoptosis through the PI3K/Akt pathway. Acta Pharmacologica Sinica, 29(7), 815-822.

    Lloyd, P. G., Prior, B. M., Yang, H. T., & Terjung, R. L. (2003). Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. American Journal of Physiology. Heart and Circulatory Physiology, 284(5), H1668-1678.

    Lou, S. J., Liu, J. Y., Chang, H., & Chen, P. J. (2008). Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Research, 1210, 48-55.

    Loughna, S., & Sato, T. N. (2001). Angiopoietin and Tie signaling pathways in vascular development. Matrix Biology, 20(5-6), 319-325.

    Makinde, T., & Agrawal, D. K. (2008). Intra and extravascular transmembrane signalling of angiopoietin-1-Tie2 receptor in health and disease. Journal of Cellular and Molecular Medicine, 12(3), 810-828.

    Marti, H. J., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E., et al. (2000). Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. American Journal of Pathology, 156(3), 965-976.

    Marttila, R. J., Lorentz, H., & Rinne, U. K. (1988). Oxygen toxicity protecting enzymes in Parkinson's disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. Journal of Neurological Sciences, 86(2-3), 321-331.

    McCloskey, D. P., Adamo, D. S., & Anderson, B. J. (2001). Exercise increases metabolic capacity in the motor cortex and striatum, but not in the hippocampus. Brain Research, 891(1-2), 168-175.

    Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., & Kadowitz, P. J. (1981). Evidence for the inhibitory role of guanosine 3', 5'-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood, 57(5), 946-955.

    Milkiewicz, M., Hudlicka, O., Verhaeg, J., Egginton, S., & Brown, M. D. (2003). Differential expression of Flk-1 and Flt-1 in rat skeletal muscle in response to chronic ischaemia: favourable effect of muscle activity. Clinical Science (Lond), 105(4), 473-482.

    Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N. P., Risau, W., et al. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72(6), 835-846.

    Miquel, J., Economos, A. C., Fleming, J., & Johnson, J. E., Jr. (1980). Mitochondrial role in cell aging. Experimental Gerontology, 15(6), 575-591.

    Miyata, T., Wada, Y., Cai, Z., Iida, Y., Horie, K., Yasuda, Y., et al. (1997). Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney International, 51(4), 1170-1181.

    Morbidelli, L., Chang, C. H., Douglas, J. G., Granger, H. J., Ledda, F., & Ziche, M. (1996). Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. American Journal of Physiology, 270(1 Pt 2), H411-415.

    Moreira, P. I., Siedlak, S. L., Aliev, G., Zhu, X., Cash, A. D., Smith, M. A., et al. (2005). Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. Journal of Neural Transmission, 112(7), 921-932.

    Mu, D., Jiang, X., Sheldon, R. A., Fox, C. K., Hamrick, S. E., Vexler, Z. S., et al. (2003). Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiology of Disease, 14(3), 524-534.

    Nadar, S. K., Blann, A., Beevers, D. G., & Lip, G. Y. (2005). Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. Journal of Internal Medicine, 258(4), 336-343.

    Namba, T., Koike, H., Murakami, K., Aoki, M., Makino, H., Hashiya, N., et al. (2003). Angiogenesis induced by endothelial nitric oxide synthase gene through vascular endothelial growth factor expression in a rat hindlimb ischemia model. Circulation, 108(18), 2250-2257.

    Nehlig, A. (1997). Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia. Diabetes Metabolism, 23(1), 18-29.

    Olfert, I. M., Breen, E. C., Mathieu-Costello, O., & Wagner, P. D. (2001a). Chronic hypoxia attenuates resting and exercise-induced VEGF, flt-1, and flk-1 mRNA levels in skeletal muscle. Journal of Applied Physiology, 90(4), 1532-1538.

    Olfert, I. M., Breen, E. C., Mathieu-Costello, O., & Wagner, P. D. (2001b). Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. Journal of Applied Physiology, 91(3), 1176-1184.

    Papapetropoulos, A., Garcia-Cardena, G., Dengler, T. J., Maisonpierre, P. C., Yancopoulos, G. D., & Sessa, W. C. (1999). Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Laboratory Investigation, 79(2), 213-223.

    Parenti, A., Morbidelli, L., Cui, X. L., Douglas, J. G., Hood, J. D., Granger, H. J., et al. (1998). Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase1/2 activation in postcapillary endothelium. Journal of Biological Chemistry, 273(7), 4220-4226.

    Parsons, P. A. (2003). From the stress theory of aging to energetic and evolutionary expectations for longevity. Biogerontology, 4(2), 63-73.

    Penn, J. S., Madan, A., Caldwell, R. B., Bartoli, M., Caldwell, R. W., & Hartnett, M. E. (2008). Vascular endothelial growth factor in eye disease. Progress in Retinal and Eye Research, 27(4), 331-371.

    Pepper, M. S., Ferrara, N., Orci, L., & Montesano, R. (1992). Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochemical and Biophysical Research Communications, 189(2), 824-831.

    Pepper, M. S., Wasi, S., Ferrara, N., Orci, L., & Montesano, R. (1994). In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Experimental Cell Research, 210(2), 298-305.

    Picciotti, P., Torsello, A., Wolf, F. I., Paludetti, G., Gaetani, E., & Pola, R. (2004). Age-dependent modifications of expression level of VEGF and its receptors in the inner ear. Experimental Gerontology, 39(8), 1253-1258.

    Ploug, T., Stallknecht, B. M., Pedersen, O., Kahn, B. B., Ohkuwa, T., Vinten, J., et al. (1990). Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. American Journal of Physiology, 259(6 Pt 1), E778-786.

    Prior, B. M., Lloyd, P. G., Ren, J., Li, H., Yang, H. T., Laughlin, M. H., et al. (2004). Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. American Journal of Physiology. Heart and Circulatory Physiology, 287(6), H2434-2447.

    Prior, B. M., Lloyd, P. G., Yang, H. T., & Terjung, R. L. (2003). Exercise-induced vascular remodeling. Exercise and Sport Sciences Reviews, 31(1), 26-33.

    Proctor, D. N., Sinning, W. E., Walro, J. M., Sieck, G. C., & Lemon, P. W. (1995). Oxidative capacity of human muscle fiber types: effects of age and training status. Journal of Applied Physiology, 78(6), 2033-2038.

    Przybyla, B., Gurley, C., Harvey, J. F., Bearden, E., Kortebein, P., Evans, W. J., et al. (2006). Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Experimental Gerontology, 41(3), 320-327.

    Quinn, T. P., Peters, K. G., De Vries, C., Ferrara, N., & Williams, L. T. (1993). Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 90(16), 7533-7537.

    Raab, S., Beck, H., Gaumann, A., Yuce, A., Gerber, H. P., Plate, K., et al. (2004). Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thrombosis and Haemostasis, 91(3), 595-605.

    Radoff, S., Cerami, A., & Vlassara, H. (1990). Isolation of surface binding protein specific for advanced glycosylation end products from mouse macrophage-derived cell line RAW 264.7. Diabetes, 39(12), 1510-1518.

    Radziszewski, W., Chopra, M., Zembowicz, A., Gryglewski, R., Ignarro, L. J., & Chaudhuri, G. (1995). Nitric oxide donors induce extrusion of cyclic GMP from isolated human blood platelets by a mechanism which may be modulated by prostaglandins. International Journal of Cardiology, 51(3), 211-220.

    Ramasamy, R., Vannucci, S. J., Yan, S. S., Herold, K., Yan, S. F., & Schmidt, A. M. (2005). Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 15(7), 16R-28R.

    Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2005). The RAGE axis and endothelial dysfunction: maladaptive roles in the diabetic vasculature and beyond. Trends in Cardiovascular Medicine, 15(7), 237-243.

    Rao, J., Oz, G., & Seaquist, E. R. (2006). Regulation of cerebral glucose metabolism. Minerva Endocrinologica, 31(2), 149-158.

    Richardson, R. S., Wagner, H., Mudaliar, S. R., Henry, R., Noyszewski, E. A., & Wagner, P. D. (1999). Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. American Journal of Physiology, 277(6 Pt 2), H2247-2252.

    Richardson, R. S., Wagner, H., Mudaliar, S. R., Saucedo, E., Henry, R., & Wagner, P. D. (2000). Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. American Journal of Physiology. Heart and Circulatory Physiology, 279(2), H772-778.

    Ritthaler, U., Deng, Y., Zhang, Y., Greten, J., Abel, M., Sido, B., et al. (1995). Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. American Journal of Pathology, 146(3), 688-694.

    Ryan, A. S., Nicklas, B. J., & Berman, D. M. (2006). Aerobic exercise is necessary to improve glucose utilization with moderate weight loss in women. Obesity (Silver Spring), 14(6), 1064-1072.

    Ryan, N. A., Zwetsloot, K. A., Westerkamp, L. M., Hickner, R. C., Pofahl, W. E., & Gavin, T. P. (2006). Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. Journal of Applied Physiology, 100(1), 178-185.

    Saggu, H., Cooksey, J., Dexter, D., Wells, F. R., Lees, A., Jenner, P., et al. (1989). A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. Journal of Neurochemistry, 53(3), 692-697.

    Sanz, A., Pamplona, R., & Barja, G. (2006). Is the mitochondrial free radical theory of aging intact? Antioxidants & Redox Signaling, 8(3-4), 582-599.

    Schleicher, E. D., Wagner, E., & Nerlich, A. G. (1997). Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging. Journal of Clinical Investigation, 99(3), 457-468.

    Schmidt, A. M., Hori, O., Chen, J. X., Li, J. F., Crandall, J., Zhang, J., et al. (1995). Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. Journal of Clinical Investigation, 96(3), 1395-1403.

    Schmidt, A. M., Yan, S. D., & Stern, D. M. (1995). The dark side of glucose. Nature Medicine, 1(10), 1002-1004.

    Schmidt, A. M., Yan, S. D., Wautier, J. L., & Stern, D. (1999). Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circulation Research, 84(5), 489-497.

    Schmidt, A. M., Yan, S. D., Yan, S. F., & Stern, D. M. (2000). The biology of the receptor for advanced glycation end products and its ligands. Biochimica et Biophysica Acta, 1498(2-3), 99-111.

    Schneider, U. C., Schilling, L., Schroeck, H., Nebe, C. T., Vajkoczy, P., & Woitzik, J. (2007). Granulocyte-macrophage colony-stimulating factor-induced vessel growth restores cerebral blood supply after bilateral carotid artery occlusion. Stroke, 38(4), 1320-1328.

    Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., et al. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62-66.

    Shetty, A. K., Hattiangady, B., & Shetty, G. A. (2005). Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia, 51(3), 173-186.

    Shoji, T., Koyama, H., Morioka, T., Tanaka, S., Kizu, A., Motoyama, K., et al. (2006). Receptor for advanced glycation end products is involved in impaired angiogenic response in diabetes. Diabetes, 55(8), 2245-2255.

    Smith, C. P., & Steinle, J. J. (2007). Changes in growth factor expression in normal aging of the rat retina. Experimental Eye Research, 85(6), 817-824.

    Smith, M. A., Nunomura, A., Lee, H. G., Zhu, X., Moreira, P. I., Avila, J., et al. (2005). Chronological primacy of oxidative stress in Alzheimer disease. Neurobiological Aging, 26(5), 579-580.

    Spier, S. A., Delp, M. D., Meininger, C. J., Donato, A. J., Ramsey, M. W., & Muller-Delp, J. M. (2004). Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles. Journal of Physiology, 556(Pt 3), 947-958.

    Steinle, J. J., Sharma, S., & Chin, V. C. (2008). Normal aging involves altered expression of growth factors in the rat choroid. Journal of Gerontology. Series A, Biological Sciences and Medicine Sciences, 63(2), 135-140.

    Stitt, A. W., He, C., Friedman, S., Scher, L., Rossi, P., Ong, L., et al. (1997). Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Molecular Medicine, 3(9), 617-627.

    Stranahan, A. M., Lee, K., Becker, K. G., Zhang, Y., Maudsley, S., Martin, B., et al. (2008). Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiological Aging.

    Suri, C., McClain, J., Thurston, G., McDonald, D. M., Zhou, H., Oldmixon, E. H., et al. (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science, 282(5388), 468-471.

    Swain, R. A., Harris, A. B., Wiener, E. C., Dutka, M. V., Morris, H. D., Theien, B. E., et al. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 1037-1046.

    Takeuchi, M., Sato, T., Takino, J., Kobayashi, Y., Furuno, S., Kikuchi, S., et al. (2007). Diagnostic utility of serum or cerebrospinal fluid levels of toxic advanced glycation end-products (TAGE) in early detection of Alzheimer's disease. Medical Hypotheses, 69(6), 1358-1366.

    Tang, K., Xia, F. C., Wagner, P. D., & Breen, E. C. (2009). Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respiratory Physiology & Neurobiology.

    Tasanarong, A., Khositseth, S., & Thitiarchakul, S. (2009). The mechanism of increased vascular permeability in renal ischemic reperfusion injury: potential role of angiopoietin-1 and hyaluronan. Journal of the Medical Association of Thailand, 92(9), 1150-1158.

    Thirumangalakudi, L., Samany, P. G., Owoso, A., Wiskar, B., & Grammas, P. (2006). Angiogenic proteins are expressed by brain blood vessels in Alzheimer's disease. Journal of Alzheimer's Disease, 10(1), 111-118.

    Thurston, G. (2002). Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. Journal of Anatomy, 200(6), 575-580.

    Thurston, G., Rudge, J. S., Ioffe, E., Zhou, H., Ross, L., Croll, S. D., et al. (2000). Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Medicine, 6(4), 460-463.

    Tidball, J. G. (1995). Inflammatory cell response to acute muscle injury. Medicine and Science in Sports and Exercise, 27(7), 1022-1032.

    Tidball, J. G. (2005). Inflammatory processes in muscle injury and repair. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 288(2), R345-353.

    Tsay, H. J., Wang, P., Wang, S. L., & Ku, H. H. (2000). Age-associated changes of superoxide dismutase and catalase activities in the rat brain. Journal of Biomedical Science, 7(6), 466-474.

    Unoki, H., & Yamagishi, S. (2008). Advanced glycation end products and insulin resistance. Current Pharmaceutical Design, 14(10), 987-989.

    Urata, Y., Yamaguchi, M., Higashiyama, Y., Ihara, Y., Goto, S., Kuwano, M., et al. (2002). Reactive oxygen species accelerate production of vascular endothelial growth factor by advanced glycation end products in RAW264.7 mouse macrophages. Free Radical Biology & Medicine, 32(8), 688-701.

    Van der Borght, K., Kobor-Nyakas, D. E., Klauke, K., Eggen, B. J., Nyakas, C., Van der Zee, E. A., et al. (2009). Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus, 19(10), 928-936.

    Vannucci, S. J., Koehler-Stec, E. M., Li, K., Reynolds, T. H., Clark, R., & Simpson, I. A. (1998). GLUT4 glucose transporter expression in rodent brain: effect of diabetes. Brain Research, 797(1), 1-11.
    Vissing, J., Andersen, M., & Diemer, N. H. (1996). Exercise-induced changes in local cerebral glucose utilization in the rat. Journal of Cerebral Blood Flow and Metabolism, 16(4), 729-736.

    Vlassara, H., Bucala, R., & Striker, L. (1994). Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Laboratory Investigation, 70(2), 138-151.

    Vohra, B. P., Sharma, S. P., & Kansal, V. K. (2001). Age-dependent variations in mitochondrial and cytosolic antioxidant enzymes and lipid peroxidation in different regions of central nervous system of guinea pigs. Indian Journal of Biochemistry & Biophysics, 38(5), 321-326.

    Wagatsuma, A. (2006). Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Experimental Gerontology, 41(1), 49-54.

    Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., & Heldin, C. H. (1994). Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. Journal of Biological Chemistry, 269(43), 26988-26995.

    Wang, H., & Keiser, J. A. (1998). Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circulation Research, 83(8), 832-840.

    Wang, Y., Galvan, V., Gorostiza, O., Ataie, M., Jin, K., & Greenberg, D. A. (2006). Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Research, 1115(1), 186-193.

    Wautier, J. L., Zoukourian, C., Chappey, O., Wautier, M. P., Guillausseau, P. J., Cao, R., et al. (1996). Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. Journal of Clinical Investigation, 97(1), 238-243.

    Woodfin, A., Voisin, M. B., & Nourshargh, S. (2007). PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arteriosclerosis, Thrombosis and Vascular Biology, 27(12), 2514-2523.

    Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., & Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242-248.

    Yeh, J., Kim, B. S., & Peresie, J. (2008). Ovarian vascular endothelial growth factor and vascular endothelial growth factor receptor patterns in reproductive aging. Fertility and Sterility, 89(5 Suppl), 1546-1556.

    Ziche, M. (1999). Role of nitric oxide in the angiogenesis of avascular tissue. Osteoarthritis and Cartilage, 7(4), 403-405.

    Zimmermann, R. C., Xiao, E., Husami, N., Sauer, M. V., Lobo, R., Kitajewski, J., et al. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. Journal of Clinical Endocrinology and Metabolism, 86(2), 768-772.

    下載圖示
    QR CODE