研究生: |
王弘毅 Hurng-Yi Wang |
---|---|
論文名稱: |
蝦虎魚類的分子系統分類 Moleculars systematics of gobioid fishes |
指導教授: |
杜銘章
Tu, Ming-Chung 李信徹 Lee, Sin-Che |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 蝦虎魚類 、親緣關係 、分子演化 、生殖週期 、粒線體12S核醣核酸二級結構 、塘鱧魚類 |
英文關鍵詞: | gobioidei, phylogenetic relationships, molecular evolution, reproductive cycle, mitochondrial 12S rRNA secondary structure, eleotrid fishes |
論文種類: | 學術論文 |
相關次數: | 點閱:134 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究以基因標誌(genetic markers)分析塘鱧以及蝦虎魚類之親緣關係,主要之成果可以分成五個部分。玆分述如後:
(1) 分析脊椎動物已發表的粒線體去氧核醣核酸序列,利用其中位於tRNAPHE 以及16S rRNA中保守的序列設計二個萬用引子。本研究利用這二個萬用引子以聚合連鎖反應(polymerase chain reaction; PCR)增幅放大脊椎動物的DNA。研究樣本包含脊椎動物的五個綱共14個物種,所有的PCR都成功的放大出約1.2kb的DNA片段。其中PCR產物長度的變化極微。顯示此一片段在脊椎動物中尚稱保守。進一步定序反應證明此一片段包含粒線體DNA中完整的12S rRNA,tRNAVAL 以及大約200bp的16S rRNA序列。由於12S rRNA基因廣泛的被運用在動物的親緣分析。大至哺乳類各目之間,小及不同屬之間的演化關係,均曾利用此基因加以探討。因此,這組萬用引子對於研究脊椎動物不同階層之親緣關係將非常具有價值。
(2) 利用上述萬用引子,增幅放大蝦虎亞目魚類的粒線體DNA。在本研究中一共採得43種蝦虎魚類,他們分別屬於33個不同的屬。這些魚類的粒線體12S rRNA以及tRNAVAL均被增幅並且定序。在親緣分析方面,利用最大儉約法(Maximum Parsimony)以及Neighbor-joining法所得到的結果非常相似,並大致上與過去型態分析所得的結論一致。其中沙塘鱧(Odontobutis)在兩種分析方法中都位於親緣樹根部(root)的位置,可以視為除溪鱧之外所有蝦虎魚類的外群。在傳統的塘鱧魚類之中,DNA分子證據強烈支持塘鱧亞科(Eleotrinae)的單一起源。而尖塘鱧(Butinae)應該是比較接近五個鰓被架(branchiostegal ray)的一群。在其餘的蝦虎魚類中,利用尾上骨(epural)的數目大致上可以將其區分為兩群。擁有一個尾上骨的魚類包括,Pezold (1993)的蝦虎亞科(Gobinae)與蚓蝦虎科(Microdesmidae)等是為一群。而彈塗魚亞科(Oxudercinae),擬蝦虎亞科(Gobionellinae)等有二個尾上骨的魚類是為第二群。這兩群則互為姊妹群。這其中禿頭鯊亞科(Sicydiinae)是為例外。雖然它有一個尾上骨但是卻被歸為第二群。由於在第二群中同一種類不同個體之間常常有一個以及二個尾上骨的多型性現象。所以禿頭鯊亞科應可視為在第二類群中較衍生的種類。
(3) 進一步利用這些蝦虎魚類的12S rRNA序列來分析此一基因的二級結構。在此一分析中還另外加入其它九種魚類的12S rRNA序列,這九種魚類分屬八個不同的目(Order)。在本研究所提出的43個stem之中,至少有一個以上互補突變(compensatory mutation)出現在脊椎動物的共有41個。分析蝦虎魚類互補突變的比例為百分之68。依據此一數據根據Hillis and Dixon (1993)的方式計算可以得到stem的序列需給予的權數(weighting)為0.66。然而不同的loop與stem權數(分別為1比1、1比0.8、1比0.6、1比0.5等)去分析蝦虎魚類的親緣關係時卻得到相同的結果。顯示減輕stem的權數與親緣關係的分析沒有關聯。另外在loop之中,很明顯的可以發現核酸組成的不對稱性即:A% > T%以及C% > T%。相同的情況也在哺乳類的12S rRNA觀察到。這種不對稱核酸組成可以用粒線體DNA複製時在C與A鹼基上所產生自發性的去硝基化(deamination)的假說解釋。此一假說也同時可以解釋在stem以及loop上transition比例大過於transversion的現象。
(4) 為了解塘鱧魚類的分布與洋流的關係,本研究分析採自高屏溪口的塘鱧。以確定其生殖週期,以及漂浮性幼體(pelagic larvae)出現的時間。在雄性個體中,其雄性素(testosterone)在一年之中以六至八月為最高,與其GSI的變動相符。雌性個體的性激素(estradiol),以及GSI與雄性個體的變化相同。進一步分析發現生殖週期的變化與當地光週期以及水溫的變動有很強的相關性。這兩項因子可能是影響塘鱧生殖週期的重要因素。
(5) 在塘鱧屬魚類的系統分類上,分別以同功電泳以及DNA序列分析台灣以及周圍離島採得的塘鱧屬魚類。同功電泳與DNA序列所得到的結果相同,二者皆支持黑塘鱧(E. melanosoma)與棕塘鱧(E. fusca)最為接近互為姊妹群,其次則為塘鱧(E. acanthopoma)。在17個同功基因座之中,ADH-1以及MDH-1可以區分三種不同的塘鱧魚類,因之可利用其作為生化鑑定的特徵。條紋塘鱧(E. faciatus)與銳頭塘鱧(E. oxycephalus)在本次研究期間均沒有在台灣以及周圍離島採獲。其中前者由於其型態描述與採自蘭嶼的棕塘鱧無法區分,因此可能是棕塘鱧的同物異名。另外採自中國大陸的銳頭塘鱧與其它三種塘鱧屬魚類的關係甚遠。它們的單系起源(monophyly)也不被DNA資料所支持。由於塘鱧屬的分布很廣,種數也多。因此其屬內的親緣關係需要進一步的分析。
塘鱧魚類在台灣的分布呈現不同種類區隔的現象。棕塘鱧主要分布在東部沿岸,黑塘鱧以及塘鱧主要分布在西部海岸。以同功電泳分析採自西部海岸五個塘鱧的族群發現,不同地區的族群分化指數極低(FST = 0.019)。顯示這些地區魚類族群遺傳結構相當均值。這種不同種間區隔分布以及種內遺傳結構均質的現象可能受到其幼體散佈以及洋流的影響。
ABSTRACT
In this study, I used genetic marker to analyse the phylogenetic relationships between eleotrids and gobiid within gobioids. The main achivement can be described as the following five sections:
(1) The conserved regions of tRNAPHE and 16S rRNA in the vertebrate mitochondrial genome were compared in order to design the primers, 12SR and 12SL. These universal primers can be broadly used to amplify a 1.2-kb DNA fragment by polymerase chain reaction (PCR) over a wide range of major vertebrate lineages represented by the species listed in the text. There is little length variation of the PCR product among different taxa. Further sequence analysis revealed that the fragment contains complete lengths of 12S rRNA and tRNAVAL, and that the length of 16S rRNA is 200 bp. In tests through all representative taxa investigated, the above 2 primers could amplify the complete 12S rRNA gene from all representative taxa investigated. As the 12S rRNA gene is widely used for phylogenetic analyses among different hierarchies, these primer sets are useful for vertebrate phylogeny.
(2) These primer sets were further used to investigate the phylogenetic relationships of Gobioidei. The molecular phylogeny of gobioid fishes studied comprising 33 genera and 43 valid species were examined by using complete mitochondrial 12S rRNA and tRNAVAL genes. Both parsimony and neighbor-joining analyses reveal comparable results and are congruent with that of morphological studies. The Odontobutis, which always formed at the root of the phylogenetic trees, can be treated as sister group of all other non-rhyacichthyid gobioids. Within eleotrid fishes, the monophyly of Eleotrinae (Hoese and Gill 1993) is strongly supported by molecular data. The Butinae is closer and should be treated as sister group of five-branchiostegal rays group. Of the five-branchiostegal rays, except of sicydine, can be divided into two groups according to their epural counts. The fish with one epural, Gobiinae of Pezold (1993) plus microdesmid, is resolved as a monophyletic group and sister to that with two epurals, Oxudercinae and Gobionellinae of Pezold (1993). However, with one epural, sicydine is more close to Oxudercinae and Gobionellinae rather than Gobiinae. Since the progressed reduction of epural number has been observed along this lineage. The sicydine should be treated as derived group within the group with two epural.
(3) The 12S rRNA sequences of 43 gobioid species and nine diverse assortments of fishes were further analyzed and employed to establish a "core" secondary structure model for fish 12S rRNA. Of 43 stems recognized, 41 of which were supported by at least some compensatory evidence among vertebrates. An analysis of compensatory substitution shows that the percentage of co-variation is 68% and the weighting factor for phylogenetic analyses to account for the dependence of mutations should be 0.66. Different stem/loop weighting schemes were applied to the analyses of phylogenetic relationships of Gobioidei which show that down-weighting paired region due to non-independence is irrelevant in the present phylogenetic analysis. The biased nucleotide composition (A% > T%, C% > G%) in loop regions was also observed on its mammalian counterpart. The exceed of A and C in loop region may be due to asymmetric mechanism of mtDNA replication which leads to the spontaneous deamination of C and A. This process may also contribute to the preference for transitions over transversions in both loop and stem regions.
(4) For further understanding the relationship between Eleotris dispersal and sea current, the reproductive cycle of Eleotris acanthopoma was investigated. For over 1 year, gonad gross morphologies of fish were examined by using light microscopy and the plasma 17 beta-estradiol (E2) and testosterone (T) were analyzed by using ELISA. In male E. acanthopoma, plasma T concentrations show a single seasonal cycle, with a peak in summer (June to August) following the profile of gonadosomatic index. In females, plasma E2 concentrations are significantly elevated during summer in accordance with the GSI. Low temperatures and a short photoperiod in winter correlate well with the arrest of gonad maturation. Annual patterns of plasma E2 and T levels are similar to those of GSI changes existing in Eleotris acanthopoma of either sexes. These findings indicate that both temperature and photoperiod dominantly affect the reproductive cycle of Eleotris acanthopoma.
(5) The systematic of genus Eleotris was carried out by isozyme electrophoresis and DNA sequences analysis. Both data sets achieve the similar conclusion, which indicates that the E. acanthopoma is sister group to E. melanosoma and E. fuscus. Among 17 loci analyzed, ADH-1 and MDH-2 can be used as biochemical key to identify these three species in Taiwan. E. faciatus were not found during this study period. Since the morphological characters of E. faciatus described by Chen (1968) can not distinguish from E. fuscus collected from Orchid Island. I suppose that the E. faciatus is synonymous to E. fuscus. E. oxycephalus was not collected either due to its rareness in Taiwan. The E. oxycephalus collected from Mainland China show distantly related with other three species. The phylogeny of this genus may need further investigation.
The distributions of Eleotris species around Taiwan are different: E. fuscus is confined to the east coast whereas the E. acanthopoma and E. melanosoma to the west. Samples of E. acanthopoma from different localities show extremely low level of differentiation (FST = 0.019), indicates the genetic structures of this species among different collecting site are homogenous. Both differentiated distributions between species and homogenous genetic structures within species are due to the association of reproductive cycle with seasonal changed water current.
REFERENCES
Akihito, Prince. 1971. On the supratemporals of Gobiid fishes. Jap. J. Ichthyol. 18: 57-62.
Akihito, Prince. 1969. A systematic examination of the gobiid fishes based on the mesopterygoid, postcleithra, branchiostegals, pelvic fins, scapula, and suborbital. Japan. J. Ichthyol. 16: 93-114.
Akihito, Prince. 1967. On four species of the gobiid fishes of the genus Eleotris found in Japan. Jap. J. Ichthyol. 14: 135-166.
Alekseeva, E. I., and Alekseev, E. F. 1997. Reproductive biology of mackerel icefish, Hampsocephalus gunnari, from the regions of South Georgia Island and Shag Rocks. Jap. J. Ichthyol. 37: 304-311.
Allen, J. R. M., and Wootton, R. J. 1982. Effect of food on the growth of carcass, liver and ovary in female Gasterosteus aculeatus L. J. Fish Biol. 21: 537- 548.
Alves-Gomes, J., Orti, G., Haygood, M., Heiligenberg, W., and Meyer, A. 1995. Phylogenetic analysis of South American electric fishes (order: Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Mol. Biol. Evol. 12: 298-318.
Asahino, K., and Hanyu, I. 1983. Role of temperature and photoperiod in annual reproductive cycle of the rose bitterling Rhodeus ocellatus ocellatus. Bull. Jpn. Soc. Sci. Fish 49: 61-67.
Asakawa, S., Kumazawa, Y., Araki, T., Himeno, H., Miura, K., and Watanabe, K. 1991. Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J. Mol. Evol. 32:511-520
Avise, J. C. 1994. "Molecular markers, natural history and evolution". Chapman and Hall New York.
Birdsong, R. S., Murdy, E. O., and Pezold, F. K. 1988. A study of the vertebral column and median fin osteology in gobioid fishes with comments on Gobioid relationships. Bull. Mar. Sci. 42: 174-214.
Borg, B. 1994. Androgens in teleost fishes (mini review). Comp. Biochem. Physiol. C 109: 219-245.
Bromage, N. R., Whitehead, C., and Breton, B. 1982. Relationship between serum levels of gonadotropin, oestradiol-17β, and vitellogenin in the control of ovarian development in the rainbow trout. II. The effects of alterations in environmental photoperiod. Gen. Comp. Endocrinol. 47: 366-376.
Cao, Y. P., Waddell, J., Okada, N., and Hasegawa, M. 1998. The complete mitochondrial DNA sequence of the shark Mustelus manazo: evaluating rooting contradictions to living bony vertebrates. Mol. Biol. Evol. 15: 1637-1646
Cerd, J., Zanuy, S., and Carrillo, M. 1997. Evidence for dietary effects on plasma levels of sexual steroids during spermatogenesis in the sea bass. Aquat. Internatl. 5: 473-477.
Chang, Y. S., Huang, F. L., and Lo, T. B. 1994. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J. Mol. Evol. 38: 138-155
Chen, J. T. F., and Yu, M. J. 1986. A synopsis of the vertebrates of Taiwan (2nd rev. and enlarg. ed.). Taipei: Commercial Book Co., pp. 283-296.
Chen, T. R. 1964. A review of gobies found in the water of Taiwan (Formosa) and adjacent seas (I). Q. J. Taiwan Mus. 17: 37-59.
Chern, C.S., and Wang, J. 1989. On the water masses at northern offshore area of Taiwan. Act. Oceanogr. Taiwan. 22: 14-32.
Clayton, D. A. 1982. Replication of animal mitochondrial DNA. Cell 28: 693-705
Desjardins, P., and Morais, R. 1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J. Mol. Biol. 212: 599-634.
Devereux, J., Haeberli, P., and Marquess, P. 1991. Genetic computer group manual, version 7.0. Univ. of Wisconsin, Madison, WI.
Dixon, M. T., and Hillis, D. M. 1993. Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. Mol. Biol. Evol. 10: 256-267.
Douzery, E., and Catzeflis, F. M. 1995. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (Mammalia). J. Mol. Evol. 41: 622-636.
Dye, H. M., Sumpter, J. P., Fagerlund, U. H. M., and Donaldson, E. M. 1986. Changes in reproductive parameters during the spawning migration of pink salmon, Oncorhynchus gorbuscha (Walbaum). J. Fish Biol. 29: 167-176.
Farrelly, F., and Butow, R. A. 1983. Rearranged mitochondrial genes in the yeast nuclear genome. Nature 301: 296-301.
Felsenstein, J. 1993. PHYLIP, 3.75c edn, Department of Genetics SK-50, University of Washington, Seattle.
Fitzpatrick, M. S., van der Kraak, G., and Schreck, G. B. 1986. Profiles of plasma sex steroids and gonadortropin in coho salmon, Oncorhynchus kisutch, during final maturation. Gen. Comp. Endocrinol. 62: 437-451.
Fukuda, M., Wakasugi, S., Tsuzuki, T., Nomiyama, H., Shimada, K., and Miyata, T. 1985. Mitochondrial DNA-like sequences in the human nuclear genome. Characterization and implications in the evolution of mitochondrial DNA. J. Mol. Biol. 186: 257-266.
Gatesy, J., Amato, G., Vrba, E., Schaller, G., and DeSalle, R. 1997. A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol. Phylogenet. Evol. 7: 303-319.
Gunther, A. 1861. Catalogue of fishes in British Museum. 3: 586-596.
Gutell, R. R. 1994. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res. 22: 3502-3507
Gutell, R. R., Weiser, B., Woese, C., and Noller, H. F. 1985. Comparative anatomy of 16S-like ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 32: 155-216.
Halanych, K. M., and Robinson, T. J. 1997. Phylogenetic relationships of cottontails (Sylvilagus, Lagomorpha): congruence of 12S rDNA and cytogenetic data. Mol. Phylogenet. Evol. 7: 294-302.
Han, C. C., Chen, I. S., and Fang, L. S. 1997. The distribution and community of fish in the Kaoping River. J. Fish. Soc. Taiwan 24: 167-183.
Harrison, I. J. 1989. Specialization of gobioid palatopterygoquadrate complex and its relevance to gobioid systematics. J. Nat. Hist. 23: 325-353.
Hedges, S. B. 1994. Molecular evidence for the origin of birds. Proc. Natl. Acad. Sci. USA 91: 2621-2624.
Hilis, D. M., and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analysis. J. Heredity 83: 189-195.
Hillis, D. M., and Dixon, M. T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quart. Rev. Biol. 66: 411-453.
Hoese, D. F. 1967. Morphological differences between the families Gobiidae and Eleotridae. Abstr. A. Mtg. Am. Soc. Ichthyol. Herpetol. 47: 13
Hoese, D. F. 1984. Gobioidei: relationships. In "Ontogeny and systematics of fishes" (H. G. Moser, W. J. Richard, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr. and S. L. Eichardson, Eds.), pp 588-591, Spec. Publ. No. 1, Amer. Soc. Ichthy. And Herpet., Allen Press, Lawerence, Kansas.
Hoese, D. F. and Gill, A. G. 1993. Phylogenetic relationships of eleotridid fishes (Perciformes: Gobioidei). Bull. Mar. Sci. 52: 415-440.
Jermiin, L. S., Graur, D., and Crozier, R. H. 1995. Evidence from analyses of intergenic regions for strand-specific directional mutation pressure in Metazoan mitochondrial DNA. Mol. Biol. Evol. 12: 558-563
Johansen, S., and Bakke, I. 1996. The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes. Mol. Marine Biol. Biotechnol. 5: 203-214
Kadmon, G., Yaron, Z., and Gordin, H. 1985. Sequence of gonadal events and oestradiol levels in Sparus aurata (L.) under two photoperiod regimes. J. Fish Biol. 26: 609-620.
Kasai, A., Kishi, M. J., and Sugimoto, T. 1992. Modeling the transport and survival of Japanese sardine larvae in and around the Kuroshio current. Fish Oceanogr. 1: 1-10.
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
Kjer, K. M. 1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol. Phylogenet. Evol. 4: 314-330.
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F. X., and Wilson, A. C. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196-6200.
Kraus, F. L., Jarecki, M., Miyamoto, M., S., Tanhauser, M., and Laipis, P. J. (1992). Mispairing and compensational changes during the evolution of mitochondrial ribosomal RNA. Mol. Biol. Evol. 9: 770-774.
Kumar, S., Tamura, K., and Nei, M. 1993. "MEGA---molecular evolutionary genetics analysis, version 1.01". Pennsylvania State University, University Park.
Kumazawa, Y., and Nishida, M. 1999. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol. Biol. Evol. 16: 784-792.
Lam, T. J. 1983. Environmental influences on gonadal activity in fish. In WS Hoar, DJ Randall, EM Donaldson, eds. Fish physiology. Vol. 9B. New York: Academic Press. pp. 65-116.
Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. 1996. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. 6: 245-258.
Ledje, C., and Arnoson, U. 1996. Phylogenetic relationships within Caniform carnivores based on analysis of the mitochondrial 12S rRNA gene. J. Mol. Evol. 43: 641-649.
Lopez, J. V., Yuhki, N., Masuda, R., Modi, W., and Brien, S. J. O. 1994. Numt, a recent transfer and tandem amplification of mitochondrial DNA to nuclear genome of domestic cat. J. Mol. Evol. 39: 174-190.
Maddison, D. R. 1994. Phylogenetic methods for inferring the evolutionary history and processes of change in discretely valued characters. Annu. Rev. Entomol. 39: 267-292.
Maddison, W. P., and Maddison, D. R. 1992. Maclade, analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts.
Martin, A. P. 1995. Metabolic rate and directional nucleotide substitution in animal mitochondrial DNA. Mol. Biol. Evol. 12: 1124-1131.
Matsuyama M, S Adachi, Y Nagahama, K Maruyama, S Matsuura. 1990. Diurnal rhythm of serum steroid hormone levels in the Japanese whiting, Sillago japonica, a daily-spawning teleost. Fish Physiol. Biochem. 8: 329-338.
Matsuyama, M., Adachi, S., Nagahama, Y., and Matsuura, S. 1991. Annual reproductive cycle of the captive female Japanese sardine Sardinops melanostictus: relationship to ovarian development and serum levels of gonadal steriod hormones. Mar. Biol. 108: 21-29.
Mayr, E. and Ashlock, P. D. 1992. Principle of systematic zoology. (2nd edn), McGraw Hill, New York.
Mayer, I., Schmitz, M., Borg, B., and Schulz, R. 1992. Seasonal endocrine changes in male and female Arctic charr (Salvelinus alpinus). I. Plasma levels of three androgens, 17α-hydroxy-20β-dihydroxy-progesterone, and 17β-estradiol. Can. J. Zool. 70: 37-42.
Mayer, I., Shackley, S. E. and Witthames, P. R. 1990. Aspects of the reproductive biology of the sea bass, Dicentrarchus labrax L. II. Fecundity and pattern of oocyte development. J. Fish Biol. 36: 141-148.
Methven, D. A., and Crim, L. W. 1991. Seasonal changes in sperm from Atlantic halibut (Hippoglossus hippoglossus). In AP Scott, JP Sumpter, DE Kime, MS Rolfe, eds. Proceeding 4th International Sympoism Reprodutive Physiology of Fish, Norwich. Fish Symp. '91, Sheffield, pp. 170.
Miller, P. J. 1971. The systematic position and occurrence of Parioglossus (Teleostei: Gobioidea) in Indian waters. Curr. Sci. 40: 339-341.
Miller, P. J. 1998. The West African species of Eleotris and their systematic affinities (Teleostei: Gobioidei). J. Nat. Hist. 32: 273-296.
Miller, P. J. 1973. The osteology and adaptive features of Rhyacichthys aspro (Teleostei: Gobioidei) and the classification of gobioid fishes. J. Zool., London 171: 397-434.
Montgelard, C., Catzeflis, F. M., and Douzery, E. 1997. Phylogenetic relationships of Artiodactyls and Cetaceans as deduced from the comparsion of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 14: 550-559.
Murdy, E. O. 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobidae: Oxudercinae). Rec. Austral. Mus. Supplement 11: 1-93.
Murphy, R. W., Sites, J. W., Buth, Jr. D. G., and Haufler, C. H. 1990. Proteins I: Isozyme electrophoresis. In DM Hillis, C Moritz, eds. Molecular Systematics. Sunderland: Sinauer Associates Inc., pp. 45-68.
Murphy, W. J., and Collier, G. E. 1996. Phylogenetic relationships within the aplocheiloid fish genus Rivulus (Cyprinodontiformes, Rivulidae): implications for Caribbean and Central American biogeography. Mol. Biol. Evol. 13: 642-649.
Murphy, W. J., and Collier, G. E. 1997. A molecular phylogeny for aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): the role of vicariance and the origins of annualism. Mol. Biol. Evol. 14: 790-799.
Nakabo, T. 1993. "Fishes of Japan with Pictorial Keys to The Species". Tokai University Press. Tokyo.
Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics, 41, 225-233.
Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583-590.
Nelson, J. S. 1994. "Fishes of the World," J. Wiley Press. New York.
Okuzawa, K., Furukawa, K., Aida, K. and Hanyu, I. 1989. Effects of photoperiod and temperature on gonadal maturation, and plasma steriod and gonadotropin levels in a cyprinid fish, the honmoroko Gnathopogon caerulescens. Gen. Comp. Endocrinol. 75:139-147.
Orti G., P. Petry, J. I., Porto, R., Jegu, M., and Meyer, A. 1996. Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of Piranhas. J. Mol. Evol. 42: 169-182.
Ouchi, K., Adachi, S., and Nagahama, Y.1988. Changes in plasma levels of steroid hormones during sexal maturation of male red seabream Pagrus major. Nippon Suisan Gakkaishi 54: 593-597.
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., and Davidian, J. B. 1988. Practical isozyme genetics. New York: Halsted Press, 215 pp.
Peer Y. V., Broeck, I. V., Rijk, P., and Wachter, R. 1994. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 22: 3488-3494.
Penzo, E., Gandolfi, G., Bargelloni, L., Colombo, L., and Patarnello, T. 1998. Messinian salinity crisis and the origin of freshwater lifestyle in western Mediterranean gobies. Mol. Biol. Evol. 15: 1472-1480
Perna, N. T., and Kocher, T. D. 1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 41: 353-358.
Pezold, F. 1993. Evidence for monophyletic gobiinae. Copeia 1993: 634-643.
Rasmussen, A. S., and Arnason, U. 1999. Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J. Mol. Evol. 48: 118-123
Reyes, A., Gissi, C., Pesole, G., and Saccone, C. 1998. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol. Biol. Evol. 15: 957-966
Richard, C. M., and Moore, W. S. 1996. A phylogeny for the African treefrog family Hyperoliidae based on mitochondrial rDNA. Mol. Phylogenet. Evol. 5: 522-532.
Roe, B. A., Ma, D. P., Wilson, R. K. and Wong, J. F. 1985. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J. Biol. Chem. 260: 9759-9774
Ross, J. L., and Merriner, J. V. 1982. Reproductive biology of the blueline tilefish, Caulolatilus microps (Goode and Bean, 1878) off North Carolina and South Carolina. National Marine Fisheries Serv., Beaufort, NC, USA. Southeast Fisheries Center. pp 67-68.
Rzhetsky, A., and Nei, M. 1992. A simple method for estimating and testing minimum-evolution trees. Mol Biol. Evol. 9: 945-967
Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
Schultz, R. 1984. Serum levels of 11- oxotestosterone in male and 17β-estradiol in female rainbow trout (Salmo gairdneri) during the first reproductive cycle. Gener. Comp. Endocrinol. 56: 111-120.
Scott, A. P., MacKenzie, D. S., and Stcey, N. E. 1984. Endocrine changes during natural spawning in the white sucker, Castostomus commersoni. II Steroid hormones. Gen. Comp. Endocrinol. 49:128-134.
Scott, A. P., and Sumpter, J. P. 1989. Seasonal variations in testicular germ cell stages and in plasma concentrations of sex steroids in male rainbow trout (Salmo gairdneri) maturing at 2 years old. Gen. Comp. Endocrinol. 73: 46-58.
Shaklee, J. B., and Keenan, C. P. 1986. A practical laboratory guide to the techniques and methodology of electrophoresis and its application to fish fillet identification. Aust. CSIRO. Mar. Lab. Rep. 177: 1-59.
Shimizu, A., Aida, K., and Hanyu, I. 1994. Effects of photoperiod and temperature on gonadal activity and plasma steriod levels in an autumn spawning bitterling, Acheilognathus rhombea, during different phases of its annual reproductive cycle. Gen. Comp. Endocrinol. 93: 137-150.
Simons, A. M., and Mayden, R. L. 1998. Phylogenetic relationships of the western north American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Mol. Phylogenet. Evol. 9: 308-329.
Simons, A. M., and Mayden, R. L. 1998. Phylogenetic relationships of the western north American phoxinins (Actinopterygii: Cyprinidae) as inferred from mitochondrial 12S and 16S ribosomal RNA sequences. Mol. Phylogenet. Evol. 9: 308-329.
Singh, S., and Singh, Y. P. 1987. Seasonal profiles of sex steroids in blood plasma and ovarian tissue of Clarias batrachus. Gen. Comp. Endocrinol. 65: 216-224.
Sitnikova, T., Rzhetsky, A., and Nei, M. 1995. Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol. 12:319-333.
Smith, A. B. 1989. RNA sequence data inphylogenetic reconstruction: testing the limits of its resolution. Cladistics 5:321-344
Springer, M. S., Hollar, L. J., and Berk, A. 1995. Compensatory substitution and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol. 12: 1138-1150.
Springer, M. S., and Douzery, E. 1996. Secondary structure and patterns of evolution among Mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43: 357-373.
Springer, M. S., Hollar, L. J., and Burk, A. 1995. Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol. 12: 1138-1150
Springer, V. G. 1983. Tyson belos, new genus and species of western Pacific fish (Gobiidae, Xenisthminae), with discussions of gobioid osteology and classification. Smithson. Contri. Zool. 390:1-40.
Stuart-Kregor, P. A. C., Sumpter, J. P. and Dodd, J. M. 1981. The involvement of gonadotrophin and sex steroids in the control of reproduction in the parr and adults of Atlantic salmon, Salmo salar L. J. Fish Biol. 18: 59-72.
Swofford, D. L. 1999. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.04 Sinauer Associates, Sunderland, Massachusetts.
Swofford, D. L., and Selander, R. B. 1989. Biosys-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Champaign, Illinois: Illinois Natural History Survey.
Sung, W. S., Lee, S. C., and Yu, M. J. 1993. Taxonomic status of the fishes of Acrossocheilus formosanus and A. labiatus (Cyprinidae: Barbinae) from Taiwan based on isozyme electrophoresis. Bull. Inst. Zool., Acad. Sinica. 32: 127-139.
Thompson, J. D., Higgins, D.G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Turner, D. H., Sugimoto, N., and Freier, S. M. 1988. RNA structure prediction. Annu. Rev. Biophys. Chem. 17: 167-192.
Tzeng, C. S., Hui, C. F., Shen, S. C., and Huang, P. C. 1992. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 20: 4853-4858
Van Boheman, C. G., and Lambert, J. G. D. 1981. Estrogen synthesis in relation to estrone, estradiol and vitellogenin plasma levels during the reproductive cycle of the female rainbow trout, Salmo gairdneri. Gen. Comp. Endocrinol. 45: 105-114.
Vawter, L., and Brown, W. M. 1993. Rates and patterns of base changein the small subunit ribosomal RNA gene. Genetics 134: 597-608
Wang, J., Liu, M., Fang, L. 1995. The reproductive biology of an endemic cyprinid, Zacco pachycephalus, in Taiwan. Environ. Biol. Fish. 43: 135-143.
Wang, H. Y., Tsai, M. P., Tu, M. C., and Lee, S. C. 2000. Universal primers to amplify the complete vertebrate mitochondrial 12S rRNA. Zoological Studies 39: 61-66.
Wang, H. Y. Tu, M. C. and Lee, S. C. 2000. Secondary structure of mitochindrial 12S rRNA in Gobioidei and its phylogenetic implications. Mol. Phylogenet. Evol. (submitted)
Wang, H. Y., Tsai, M. P., Tu, M. C., Jerry, D., and Lee, S. C. 2000. Molecular phylogenetic relationships of Gobioid fishes based on analysis of the mitochondrial 12S rRNA sequences. Mol. Phylogenet. Evol. (submitted)
Wang, H. Y., Tsai, M. P., Yu, M. J., and Lee, S. C. 1999. Influence of glaciation on divergence patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Molecular Ecology 8: 1879-1888.
Wang, H. Y., Lee, S. C., and Yu, M. J. 1997. Genetic Evidence to Clarify the Systematic Status of the Genera Zacco and Candidia (Cypriniformes: Cyprinidae). Zool. Stud. 36: 170-177.
Wheeler, W. C., and Honeycutt, R. L. 1988. Paired sequence difference in ribosomal RNAs: evolution and phylogenetic implications. Mol. Biol. Evol. 5: 90-96
Wright, S. 1978. Evolution and the genetics of populations. Vol 4, Variability within and among natural populations. University of Chicago Press, Chicago.
Wu, C-I., and Maeda, N. 1987. Inequality in mutation rates of the two strands of DNA. Nature 327: 169-170
Yu, J. K., Wang, H. Y., Lee, S. C. and Dai, C. F. 1999. Genetic structure of a scleractinian coral, Mycedium elephantotus, in Taiwan. Marine Biology 133: 21-28
Zardoya, R., Garrido-Pertierra, A., and Bautista, J. M. 1995. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J. Mol. Evol. 41: 942-951
Zardoya, R., and Meyer, A. 1997. The complete DNA sequence of the mitochondrial genome of a 'living fossil,' the coelacanth (Latimeria chalumnae). Genetics 146: 995-1010
Zuker, M. 1989. Computer prediction of RNA structure. In Methods in Enzymology, (J. E. Dahlberg and J. N. Abelson, eds.), 180: 262-288, Acad. Press, San Diego, CA, USA.