簡易檢索 / 詳目顯示

研究生: 林宇恆
Lin, Yu-Heng
論文名稱: 決策樹結合複迴歸模型預測氣溫與雨量
Decision Tree Combined Multiple Linear Regression Model to Forecast Temperature and Rainfall
指導教授: 呂藝光
Leu, Yih-Guang
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 決策樹預測線性複迴歸模型
英文關鍵詞: Decision Tree, Forecast, Multiple linear regression model
DOI URL: https://doi.org/10.6345/NTNU202203933
論文種類: 學術論文
相關次數: 點閱:179下載:54
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文發展一以決策樹為基礎的氣溫與雨量之預測模型。由於傳統決策樹都是以區間化輸出為主,因此該預測模型將線性複迴歸模型整合至決策樹以達成數值化輸出。本論文利用該預測模型來預測領前1至7天的氣溫與雨量,並針對預測值給予一定信賴水準的信賴區間。為了說明此預測模型的效能,該預測模型與其他時間序列的預測方法進行比較,其中時間序列的預測方法包括自迴歸、移動平均法、自迴歸差分整合移動平均法。

    Based on decision tree, the purpose of this thesis is to develop a forecast model for temperature and rainfall. Because the traditional decision tree generates interval output, the forecast model integrates the multiple linear regression model into the decision tree in order to achieve the goal of numeric output. In this thesis, the seven days ahead temperature and rainfall are predicted by using the forecast model, and their confidence intervals are given at a confidence level. In order to demonstrate the effectiveness of the forecast model, we compare the forecast model with some different time series methods, such as autoregressive (AR), moving average(MA), autoregressive integrated moving average (ARIMA).

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iiv 圖 目 錄 vii 表 目 錄 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 2 1.3 研究目的 3 1.4 各章節簡述 5 第二章 文獻探討與回顧 6 2.1 天氣預測 6 2.2 資料探勘 5 2.3 常見的預測方法 7 2.3.1 自迴歸模型 7 2.3.2 移動平均模型 8 2.3.3 自迴歸差分整合移動平均模型 8 2.3.4 決策樹 9 2.4 決策樹 10 2.4.1 疊代二元樹3代 10 2.4.2 C4.5 10 2.4.3 CART 11 2.4.4 模糊決策樹 12 2.5 複迴歸模型 13 第三章 決策樹與複迴歸預測方法 15 3.1 資料處理 15 3.1.1 天氣資料集 15 3.1.2 資料前處理 17 3.2 決策樹分析 20 3.3 複迴歸分析 21 3.4 評估 21 3.4.1 平均絕對誤差 21 3.4.2 均方根誤差 21 3.4.3 平均絕對百分比誤差 21 3.4.4 皮爾森相關係數 22 3.4.5 信賴區間 23 第四章 實驗與討論 27 4.1 資料的相關性分析 27 4.1.1 氣溫的相關性分析 27 4.1.2 雨量的相關性分析 27 4.2 建立決策樹 28 4.2.1 氣溫的決策樹建立 28 4.2.2 雨量的決策樹建立 29 4.3 複迴歸分析 31 4.3.1 氣溫複迴歸分析 31 4.3.2 雨量複迴歸分析 33 4.4 評估預測好壞 37 4.4.1 氣溫迴歸決策樹預測 37 4.4.2 雨量迴歸決策樹預測 54 第五章 結論與未來展望 70 5.1結論 70 5.2未來展望 70 參考文獻 71

    [1]S. Kotsiantis, “Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values,” World Academy of Science. Engineering and Technology., pp. 450-454, 2007.
    [2]D. Chauhan and J. Thakur,“Data Mining Techniques for Weather Prediction: A Review,”International Journal on Recent and Innovation Trend in Computing and Communication., vol. 2, no. 8, pp. 2184-2189, 2013.
    [3]A. R. Ganguly, and K. Teinhaeuser, “Data Mining for Climate Change and Impacts,”IEEE International Conference on Data Mining., vol. 4, no. 6, pp. 342-349, 2008.
    [4]Auroop R Ganguly and Karsten Teinhaeuser,“Data mining for climate change and impacts,”IEEE International Conference on Data Mining., pp. 385-394, Dec 2008.
    [5]香港天文台。http://www.hko.gov.hk/cis/climat_c.htm
    [6]R Software官方網站。https://www.r-project.org/
    [7]E. Kaya, C. Barut, and B. Mente,“A method based on the vander Hoven spectrum for performance evaluation in prediction of wind speed.”Turk. J. Earth Science, pp. 1–9, 2013.
    [8]D. Willenbockel, Extreme Weather Events and Crop Price Spikes in a Changing Climate, Illustrative Global Simulation Scenarios. Oxfarm Reserach Reports, 2012.
    [9]M. K. Linnenluecke, A. Griffiths, and M Winn,“Extreme weather events and the critical importance of anticipatory adaptation and organizational resilience in responding to impacts,” Business Strategy Environment, vol. 21, pp. 17–32, 2012.
    [10]T. Pang-Ning, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson, 2008.
    [11]J. Han and M. Kamber, Data Mining: Concepts & Techniques. Morgan & Kaufmann, 2000.
    [12]M. H . Dunham, Data mining: Introductory and Advanced Topics. Prentice Hall, 2002.
    [13]D. J. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.
    [14]P. Domingos and G. Hulten.“Mining high-speed data streams,”International Conference on Knowledge Discovery and Data Mining., pp. 71-80, 2000.
    [15]R. A. Fisher. “ The use of multiple measurements in taxonomic problems. ” Annals of Eugenics., pp. 179-188, 1936.
    [16]N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press, 2011.
    [17]C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. Next Generation Data Mining, 2003.
    [18]R. Agrawal, T. Imielinski, and A. Swami,“Mining association rules between sets of items in large databases,”SIGMOD International Conference, 1993.
    [19]S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,“Clustering Data Streams: Theory and Practice,”IEEE Trans on Knowledge and Data Engineering, vol. 15, no. 3, pp. 515-528, May/June 2003.
    [20]A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice Hall Advanced Reference Series. Prentice Hall, March 1988.
    [21]D. Kifer, S. Ben-David, and J. Gehrke,“Detecting change in data streams,”VLDB International Conference, pp. 180-191, 2004.
    [22]D. S. Pinky and T. Hitesh , “Prediction Of Rainfall Using Data mining Technique Over Assam,”IJCSE Journal on Computer Science and Engineering, Vol. 5, no.6, Apr-May, 2014.
    [23]S. S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall International, 1999.
    [24]P. Stoica, T. McKevey, J. Mari,“MA estimation in polynomial time,” IEEE Trans on Signal Processing, vol. 48, no. 7, pp. 1999-2012, 2000.
    [25]C. Peiyuan, P. Troels, B. J. Birgitte, and C. Zhe,“ARIMA-Based series model of stochastic wind power generation,”IEEE Trans on Power Systems, vol. 25, no. 2, pp. 667-676, 2010.
    [26]E. G. Petre, “A decision tree for weather prediction”, Buletinul, vol. LXI, no. 1, pp. 77-82, 2009.
    [27]P.Hemalatha, “Implementation of data mining techniques for weather report guidance for ships using global positioning system,”International Journal Of Computational Engineering Research, vol. 3, no. 3 , March 2013.
    [28]S. Kannan , S. Ghosh, “Prediction of daily rainfall state in a river basin using statistical downscaling from GCM output,” Springer-Verlag, July 2010.
    [29]E. Kaya, B. Barutçu, and S. Menteş, “A method based on the van der Hoven spectrum for performance evaluation in prediction of wind speed,” Turk. J. Earth Science, vol. 22, pp. 1–9, 2013.
    [30]J. R. Quinlan, Discovering Rules by Induction from Large Collection of Example, Edinburgh University Press, 1979.
    [31]J. R. Quinlan, “Simplifying decision trees,” International Journal on Man-Machine, vol. 27, pp. 221-234, 1987.
    [32]J. R. Quinlan, C4.5: Programs For Machine Learning. Morgan-Kanufmann Publishers, San Mateo, CA, 1993.
    [33]L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression Trees. Chapman & Hall, New York, 1984.
    [34]E. C. C. Tsang, X. Z. Wang, and D. S. Yeung, “Improving Learning Accuracy of Fuzzy Decision Trees by Hybrid Neural Networks,” IEEE Trans on Fuzzy Systems, VOL. 8, N0. 5, pp. 601-613, Oct, 2000.
    [35]Juan Sun, Xi-Zhao Wang, “An Initial Comparison on Noise Resisting between Crisp and Fuzzy Decision Trees,” IEEE International conference on Machine Learning and Cybernetics, Guangzhou, pp. 18-21, Aug, 2005.
    [36]A. Suarez and J. F. Lutsko, “Globally Optimal Fuzzy Decision Trees for Classification and Regression,” IEEE Trans on Pattern Analysis and Machine Intelligence, VOL. 21, N0. 12, pp. 1297-1311, Dec, 1999.
    [37]Neha Khandelwal, Ruchi Davey, “ Climatic Assessment of Rajasthan’s Region for Drought With Concern of Data Mining Techniques,” International Journal of Engineering Research and Applications(IJERA), Vol. 2, Issue 5, pp. 1695-1697, September-October, 2012.
    [38]林惠玲、陳正倉,應用統計學, 雙葉書廊,台灣,2011。

    下載圖示
    QR CODE