研究生: |
鄭孟勤 Cheng, Meng-Chin |
---|---|
論文名稱: |
以第一原理計算探討銠金合金表面對甲醇反應的效果及反應路徑的影響 The mechanism investigation of methanol reaction on Rh-Au alloy by first principles calculation |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 甲醇氧化還原 、密度泛函理論計算 、RhAu合金 |
英文關鍵詞: | methanol oxidation reaction, density functional theory calculation, RhAu alloy |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.009.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:104 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文運用密度泛函理論計算在RhAu合金催化表面,甲醇氧化反應的反應機構。RhAu是在將Rh原子層建構在Au(100)表面,其原子半徑差距會使Rh層在表面扭曲,低配位的Rh原子將形成類似團簇(cluster)的結構。相較於其在Rh(100)純金屬表面上的結果,會有更佳的反應活性。因此將從扭曲表面形成物理結構上的差別,以及Rh與輔層的Au接觸產生電子層面的影響,兩方面討論RhAu 表面能有效進行MOR的原因。RhAu表面的Rh電子分布更集中,強化其吸附能力並降低了O-H斷鍵的反應能障,影響了較重要的兩項反應途徑(CH3OHCH3OCH2O)。
此外,我們利用類似構型的Rh2Au36、Rh2Au38、Rh36Au2、Rh38Au2團簇,分析電子層面對於反應能力的影響。其中Rh2Au38有更多的輔層Au原子並表現出較RhAu表面更強的反應能力。DOS(density of state)的結果顯示RhAu表面的Rh會有較高密度的電子形成鍵結,強化吸附能力並帶來更佳的反應活性。計算結果與實驗觀察到,少量Rh添加於Au表面,甲醇反應活性將會急遽增強,而增強幅度將隨Rh比例上升而趨帄緩。
最後我們Rh(100)表面吸附O及OH,討論甲醇在氧的輔助下的斷鍵能力,並與乾淨Rh(100)的結果比較。與氧相較,羥基在表面的輔助斷鍵的表現較弱。
First principles calculations have been used to investigate the mechanism of methanol reaction on bimetallic RhAu catalysts. We initially compare the reactions on RhAu and Rh(100) surfaces. RhAu surface was built by adding a Rh layer on Au(100) to simulate the Rh deposition on Au substrate in the experiment; the Rh layer shrunk forming the low-coordinate surface Rh atoms. The higher active of methanol reaction on RhAu surface, thus, corresponds to both the physical effect from the shrunk Rh layer and the electronic effect caused by the subsurface Au atoms. Surface Rh atoms of RhAu surface has more localized charge distribution due to the low coordination and accumulate more charge form subsurface Au atoms that can strengthen the methanol adsorption and lower the dissociation barrier for initial O-H bond cleavage, the two key steps that control the activity of methanol reaction. Furthermore, we examined RhAu clusters of Rh2Au36, Rh2Au38, Rh36Au2 and Rh38Au2 with similar shapes to analyze electronic effect contributed to reaction activity. Rh2Au38 with more substrate Au elements shows the highest activity, better than that on RhAu surface. The detailed electronic structures of those RhAu bimetals have also been examined by the density of state analysis. The computational results have been confirmed from the experimental observation that the activity increases dramatically as small amount of Rh deposited on Au substrate; the activity becomes saturated as the deposited Rh increases. Finally, we introduce surface oxygen and hydroxyl neighboring to the methanol and its fragment to investigate the oxidation assisted methanol reaction on Rh(100). Surface hydroxyl moderately enhanced the MOR while surface oxygen shows small assistance.
1. Meyer, F., et al., Methanol-essential growth of Escherichia coli. Nat Commun, 2018. 9(1): p. 1508.
2. Gong, C., et al., Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions. Renewable Energy, 2018. 127: p. 56-63.
3. Carvalho, L., et al., Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment. Applied Energy, 2018. 225: p. 570-584.
4. Leach, F.C.P., et al., The effect of oxygenate fuels on PN emissions from a highly boosted GDI engine. Fuel, 2018. 225: p. 277-286.
5. Tartakovsky, L. and M. Sheintuch, Fuel reforming in internal combustion engines. Progress in Energy and Combustion Science, 2018. 67: p. 88-114.
6. Fang, Y.-H. and Z.-P. Liu, First principles Tafel kinetics of methanol oxidation on Pt(111). Surface Science, 2015. 631: p. 42-47.
7. Wang, G.-C., et al., The relationship between adsorption energies of methyl on metals and the metallic electronic properties: A first-principles DFT study. Journal of Computational Chemistry, 2005. 26(9): p. 871-878.
8. Hibbitts, D. and M. Neurock, Promotional effects of chemisorbed oxygen and hydroxide in the activation of C–H and O–H bonds over transition metal surfaces. Surface Science, 2016. 650: p. 210-220.
9. <Mechanisms of Methanol Decomposition on Platinum A Combined Experimental and ab.pdf>.
10. Qi, Y., et al., Reexamination of formic acid decomposition on the Pt(111) surface both in the absence and in the presence of water, from periodic DFT calculations. Catalysis Science & Technology, 2015. 5(6): p. 3322-3332.
11. <A Periodic Density Functional Theory Study of the Dehydrogenation of Methanol over.pdf>.
12. Damte, J.Y., et al., Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst. Phys Chem Chem Phys, 2018. 20(14): p. 9355-9363.
13. Cahyanto, W.T., et al., Interaction of methanol and its dehydrogenation species with Pt-alloy surfaces. 2016. 1712: p. 050023.
14. Ding, Q., et al., Insight into the Reaction Mechanisms of Methanol on PtRu/Pt(111): A Density Functional Study. Applied Surface Science, 2016. 369: p. 257-266.
15. Russell, A.E., Preface. Faraday Discuss., 2009. 140: p. 9-10.
16. <Oxidation of Methanol over Polycrystalline Rh and Pt Rates,.pdf>.
17. Sheng, T. and S.-G. Sun, Insight into the promoting role of Rh doped on Pt(111) in
55
methanol electro-oxidation. Journal of Electroanalytical Chemistry, 2016. 781: p. 24-29.
18. Zhang, M., X. Wu, and Y. Yu, A comparative DFT study on the dehydrogenation of methanol on Rh(100) and Rh(110). Applied Surface Science, 2018. 436: p. 268-276.
19. Hsieh, C.-T., et al., Bimetallic Pd–Rh nanoparticles onto reduced graphene oxide nanosheets as electrocatalysts for methanol oxidation. Journal of Electroanalytical Chemistry, 2016. 761: p. 28-36.
20. Soszko, M., et al., Electrochemical characterization of the surface and methanol electrooxidation on Pt–Rh–Pd ternary alloys. Journal of Power Sources, 2011. 196(7): p. 3513-3522.
21. Nieskens, D.L.S., D. Curulla Ferré, and J.W. Niemantsverdriet, The Influence of Promoters and Poisons on Carbon Monoxide Adsorption on Rh(100): A DFT Study. ChemPhysChem, 2005. 6(7): p. 1293-1298.
22. <Structure Sensitivity of Methanol Electrooxidation on.pdf>.
23. Herron, J.A., et al., Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study. ACS Catalysis, 2014. 4(12): p. 4434-4445.
24. Kelly, T.G., et al., Comparison of O−H, C−H, and C−O Bond Scission Sequence of Methanol on Tungsten Carbide Surfaces Modified by Ni, Rh, and Au. The Journal of Physical Chemistry C, 2011. 115(14): p. 6644-6650.
25. <Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition.pdf>.
26. Chang, C.-C., et al., Effect of noble metal on oxidative steam reforming of methanol over CuO/ZnO/Al2O3 catalysts. International Journal of Hydrogen Energy, 2012. 37(15): p. 11176-11184.
27. Hung, T.-C., et al., Dependence on Size of Supported Rh Nanoclusters in the Decomposition of Methanol. ACS Catalysis, 2015. 5(7): p. 4276-4287.
28. Lee, H., et al., Decomposition of methanol-d4 on Au-Rh bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Phys Chem Chem Phys, 2018. 20(16): p. 11260-11272.
29. Jiang, R., et al., Methanol dehydrogenation on Rh(111): A density functional and microkinetic modeling study. Journal of Molecular Catalysis A: Chemical, 2011. 344(1-2): p. 99-110.
30. Li, H.-J., et al., Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surface Science, 2015. 641: p. 105-111.
31. Fajín, J.L.C., M.N.D.S. Cordeiro, and J.R.B. Gomes, Methanol dissociation on bimetallic surfaces: validity of the general Brønsted–Evans–Polanyi relationship for O–H bond cleavage. RSC Advances, 2016. 6(22): p. 18695-18702.
32. Wang, G.C., Y.H. Zhou, and J. Nakamura, Characterization of methoxy adsorption on some transition metals: a first principles density functional theory study. J Chem
56
Phys, 2005. 122(4): p. 44707.
33. <A Direct Relation between Adsorbate Interactions, Configurations, and Reactivity.pdf>.
34. Morgan, A., et al., Electrooxidation of methanol in an alkaline fuel cell: determination of the nature of the initial adsorbate. Phys Chem Chem Phys, 2013. 15(46): p. 20170-5.