簡易檢索 / 詳目顯示

研究生: 施峰熙
Feng-Hsi Shih
論文名稱: 台灣恆春半島現生蠑螺與墾丁遺址蠑螺口蓋穩定碳氧同位素之環境意義
Environmental implication from stable carbon and oxygen isotope of live and archaeological shells and opercula of Turban snails from Hengchun Peninsula and Kenting site, Taiwan
指導教授: 米泓生
Mii, Horng-Sheng
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 130
中文關鍵詞: 穩定碳氧同位素墾丁遺址蠑螺環境變遷
英文關鍵詞: Stable carbon and oxygen isotope, Kenting site, Turban snails, Environmental change
論文種類: 學術論文
相關次數: 點閱:445下載:69
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分析恆春半島沿海採集的八個現生蠑螺標本(圓蠑螺、金口蠑螺和台灣蠑螺),以及墾丁考古遺址的五個口蓋標本(銀口蠑螺)的穩定碳氧同位素組成,探討蠑螺口蓋與殼體之間於碳氧同位素上的關係和現生蠑螺口蓋與殼體的氧同位素成份與其生活海域環境之關連性,並進一步解析墾丁考古遺址的古生態環境。

      恆春地區現生蠑螺殼體的13C值介於0.38~2.10‰之間(平均值為1.46±0.30‰,N=365;1σ)、口蓋13C值則在0.65~2.80‰之間(1.76±0.44‰,N=482)。殼體的δ18O值於-2.40~-0.14‰間(-1.54±0.51‰)、口蓋的18O值則在-2.40~0.25‰間(-1.40±0.53‰)。八個現生蠑螺標本中,殼體、口蓋的13C值有七個標本存在明顯的差異,僅有一個金口蠑螺差異甚小;18O值則在兩個圓蠑螺與兩個金口蠑螺出現顯著差異,三個金口蠑螺與一個台灣蠑螺則差異甚小。根據氧同位素數值變化情形顯示,現生蠑螺的生命期約在一年至一年半之間。依據中央氣象局鵝鑾鼻測站的海溫記錄,並代入海水的氧同位素數值(夏季為0‰、冬季為0.14‰),估計在該環境下達成平衡之霰石氧同位素數值應介於-2.65‰至0.06‰之間,因為殼體、口蓋的18O值多介於此一範圍內,故推論其與水體的18O數值大約可達到平衡,因此蠑螺殼體及口蓋的氧同位素大致可反映海溫季節性的變化。

      墾丁考古遺址銀口蠑螺口蓋的18O值在-2.71~-0.28‰之間(-1.54±0.58‰,N=266),假設4000 B.P.海水的氧同位素數值與今日相似,則恆春半島大約在距今4千年前的溫度估計在21.5~31.5℃之間,比現今溫暖(19.6~29.7℃;2003年1月~2006年12月)。由氧同位素振幅所推論的季節性的變化,當時該蠑螺的採集多在冬春兩季。遺址蠑螺口蓋的13C值在2.45~5.83‰之間(3.33±0.49‰),整體較現生口蓋的13C值約高1.57‰,顯示當時恆春半島海域營養鹽含量或水團性質與今日有所差別。

    To examine when the 18O values of Turban snail shells and opercula reach the isotopic equilibrium with ambient seawater and unravel the paleoenvironment of ~4,000 B.P. in southern Taiwan, this study analyzed the stable isotopic compositions of eight alive Turban snails (two Turbo setosus, five T. chrysostomus and a T. sparverius) collected from Hengchun Peninsula and five opercula of T. argyrostoma collected from Kenting site, Hengchun.

      The 13C values of modern snail shells and opercula are between 0.38 and 2.10‰ (1.46±0.30‰; 1σ; N=365) and 0.65 and 2.80‰ (1.76±0.44‰; 1σ; N=482), respectirely. The 18O values of modern snail shells and opercula are between -2.40 and -0.14‰ (-1.54±0.51‰) and -2.40 and 0.25‰ (-1.40±0.53‰), respectirely. 13C values of seven modern opercula are significant different from those of complimentary shell. Based on the sea water temperature from O-luan-pi buoy and measured 18O of seawater (18O = 0‰ SMOW for summer and 18O = 0.14‰ SMOW for winter), the 18O values of aragonite precipitated in equrlibrium should be between -2.65‰ and 0.06‰. Because most of the 18O values of modern Turban snail shells and opercula are within this range, the 18O values of modern Turban snail shells and opercula are in apparently isotopic equibrium with the seawater they lived in.

      The 18O values of the five archaeological T. argyrostoma opercula are between -2.71 and 0.28‰ (-1.54±0.58‰; 1σ; N=266). Assuming the 18O values of seawater was simlar to that of present, the calculated oxygen isotope temperature is between 21.5℃ and 31.5℃ for ~4,000 B.P. and was roughly 2℃warmer than present. Based on the 18O records, most of the archaeological snails were collected in winter and spring. 13C values of the archaeological opercula (3.33±0.49‰) are 1.57‰ greater than those of modern opercula suggesting that the hydrological condition was different from present.

    ABSTRACT...............................................III 摘要.....................................................V 誌謝...................................................VII 目錄..................................................VIII 圖目.....................................................X 表目...................................................XVI 第一章、緒論.............................................1 1.1 前言.................................................1 1.2 前人研究.............................................6 1.2.1 腹足動物及其應用...................................6 1.2.2 蠑螺科殼體與口蓋相關研究..........................10 1.2.3 恆春半島墾丁考古遺址的研究........................12 1.2.4 4000 B.P.的古環境研究概況.........................13 1.3 研究目的............................................16 第二章、研究地區與標本..................................18 2.1 恆春半島的自然環境..........................18 2.2 墾丁考古遺址的人文背景......................20 2.3 蠑螺的生活習性..............................23 第三章、研究方法........................................26 3.1 蠑螺的鑑定及處理............................26 3.2 蠑螺的口蓋標本製作及X-ray分析...............26 3.2.1 蠑螺殼體標本製作..................................26 3.2.2 蠑螺口蓋標本製作..................................28 3.2.3 X-ray分析礦物成分析...............................29 3.3 穩定碳氧同位素分析..................................31 第四章、結果............................................32 4.1 標本觀察及組成..............................32 4.2 穩定碳氧同位素記錄..........................38 第五章、討論............................................53 5.1 現生蠑螺標本與恆春半島的環境訊號....................53 5.2 解析墾丁考古遺址的古環境............................67 第六章、結論............................................74 參考文獻................................................75 附錄一、恆春現生蠑螺相關報導內文........................88 附錄二、現生蠑螺殼體碳氧同位素數值......................91 附錄三、現生蠑螺口蓋碳氧同位素數值......................97 附錄四、墾丁遺址銀口蠑螺口蓋碳氧同位素數值.............105 附錄五、現生蠑螺殼體口蓋氧同位素溫度與季平均海溫.......110 附錄六、墾丁遺址銀口蠑螺口蓋氧同位素溫度與季平均海溫...112 作者簡介...............................................114

    王鑫,1985,第二篇:地理‧地形‧地質景觀;墾丁國家公園史前文化與生態資源:內政部營建署墾丁國家公園管理處,33-75頁。

    王鑫,1996,墾丁國家公園地形景觀簡介:內政部營建署墾丁國家公園管理處,177頁。

    任淑仙等編著,1995,無脊椎動物學(上):淑馨出版社,302-342頁。

    朱誠、謝志仁、申洪源等編著,2003,全球變化科學導論:南京大學出版社,342頁。

    李光周,1985,第一篇:史前文史景觀;墾丁國家公園史前文化與生態資源:內政部營建署墾丁國家公園管理處,3-19頁。

    李匡悌,2002,恆春半島的人文史蹟:內政部營建署墾丁國家公園管理處,127頁。

    李匡悌,2005,論墾丁史前聚落遺址的貝類採集及其古代水體環境的意義:南島學報,第一卷,第二號,47-63頁。

    李孟陽、魏國彥、汪中和,1996,台灣南方海域海水氧同位素比值的變化及其古海洋學上的應用(長摘要):中國地質學會八十五年年會大會手冊及論文摘要,43-47頁。

    林玉詩,2004,黑潮上游區全新世古海洋學研究:國立台灣大學地質科學研究所碩士論文,共計70頁。

    林淑芬,2004,由孢粉記錄看宜蘭平原最近4200年來的自然環境演變及其與史前文化發展之關係:國立台灣大學地質科學研究所碩士論文,共計189頁。

    竺可楨,1973,中國近5000年來氣候變遷的初步研究:中國科學,第16期,第2輯,168-189頁。

    張秋蓮,2006,南投埔里鯉魚潭自2600年以來沉積物的孢粉分析:國立台灣大學地質科學研究所碩士論文,共計89頁。

    張國平,2006,南灣內夏季1-4週溫降與回升現象原因之探討:國立中央大學水文科學研究所碩士論文,共計101頁。

    連凱莉、陳明輝,2004,如何判別鐘螺和蠑螺的性別?一種快速又簡便的方法:漁業推廣,行政院農委會漁業署,第208號,52-54頁。

    都鄉義寬、鈴木清一,1984,腹足類の石灰質蓋2─形成様式─:日本地質学会第91年学術大会講演要旨,321-321頁。

    陳文山、鄭穎敏、黃奇瑜,1985,台灣南部恆春半島之地質:地質,第6卷,第2期,47-74頁。

    陳明道,2005,屏縣/後壁湖海域首次野放鐘螺:東森新聞報(2005/04/01):http://www.ettoday.com/2005/04/01/329-1772105.htm

    陳明道,2006,蠑螺長期被濫採,搶手貨一斤叫價200元:東森新聞報(2006/04/05)http://www.ettoday.com/2006/04/05/124-1925710.htm

    陳明輝、邱郁文、Axel Alf、宋克義、李展榮,2004,恆春半島潮間帶產之蠑螺種類與豐度:國家公園學報,第14卷,第1號,1-9頁。

    舒軍武、王偉銘、陳煒,2006,太湖平原西北部全新世以來植被與環境變化:中國古生物學會孢粉學分會簡訊,第2期,13-14頁。

    鈴木清一、都鄉義寛,1984,腹足類の石灰質蓋1─構築構造─:日本地質学会第91年学術大会講演要旨,320-320頁。

    鈴木清一、都鄉義寛,1987,腹足類石灰化蓋の構成鉱物と内部構造:日本地質学会第94年学術大会講演要旨,398-398頁。

    鈴木清一、都鄉義寛,1987,腹足類(リュウテンサザエ科)の石灰化蓋の構築構造:地球科学,第41卷,第1號,48-56頁。

    福衛二號衛星影像,2007,UrMap你的地圖網:http://www.urmap.tw

    鄭金娥、陳明輝、方力行,2005,台灣產蠑螺屬(軟體動物門:腹足綱:蠑螺科)貝類之分子類緣關係:第十一屆珊瑚礁生物研討會議程與摘要集,26頁。

    劉峰貴、侯光良、張鐿鋰、張忠孝、許長軍、周強、張海峰,2005,中全新世氣候突變對青海東北部史前文化的影響:地理學報,第60卷,第5期,733-741頁。

    賴景陽,2005,台灣貝類圖鑑:貓頭鷹出版社,384頁。

    戴永定、吳浩若、傅瑜、張維、王家珍、陽萬容、馮儒林、杜乃正著,1994,生物礦物學:石油工業出版社,572頁。

    鍾柏生,1991,蠑螺的口蓋:貝友,第16卷,23-27頁。

    鍾逸甫,2002,蠑螺的繁養殖:中國水產,第592號,31-34頁。

    羅建育、陳鎮東,1997,台灣高山湖泊沉積記錄指示的近4000年氣候和環境變化:中國科學(D輯),第二十七卷,第四號,366-372頁。

    Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. and Land, L. S., eds, Stable isotopes in sedimentary geology: SEPM Short Course, n.10, p.1-151.

    Arnfried, A., 2000, Threats to protection of coral reefs: University of Vienna, 37p.

    Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.

    Barry, B. M., Michael, J. S. Tevesz, and Daniela C. S., 1998, Paleolimnological significance of spinose and nonspinose morphs of Pyrgophorus hibbardi (Leonard & Franzen, 1944): Journal of Paleolimnology, n.20, p.99-102.

    Bax, N. J., McEnnulty, F. R., and Gowlett-Holmes, K. L., 2003, Distribution and Biology of the Introduced Gastropod, Maoricolpus roseus (Quoy and Gamard, 1834) (Caenogastropoda: Turritellidae) in Australia: CSIRO Marine Research, n.25, 40p.

    Brown, L. R., Renner, M., and Flavin, C., 1997, Vital Signs: The Environment Trends That Are Shaping Our Future: Worldwatch, 165p.

    Campo, E. V., Cour, P., and Sixuan, H., 1996, Holocene environmental changes in Bangong Co basin (Western Tibet), Part 2: The pollen record: Palaeography, Palaeoclimatology, Palaeoecology, p.49-63.

    Carbotte, S. M., Bell, R. E., Ryan, W. B. F., C. McHugh, C., Slagle, A., F. Nitsche, F. and Rubenstone, J., 2004, Environmental change and oyster colonization within the Hudson River estuary linked to Holocene climate: Geo-Mar Lett., n.24, p.212–224.

    Chen, M.-H., 2005, The resources of the edible turban snails Turbo spp. along the Coast of Hengchun Peninsula, Southern Taiwan: Enhancement and sustainability of shellfish resources, 8th International Conference Shellfish Restoration, p.83.

    Chen, P.-Y., 1977, Table of key lines in X-ray powder diffraction patterns of minerals in clay and associated rocks: Indiana University, Indiana Geological Survey, Occasional Paper, 67p.

    Chen, Z., Wang, Z., Schneiderman, J., Tao, J., and Gai, Y., 2005, Holocene climate fluctuations in the Yangtze delta of eastern China and the Neolithic response: Holocene, n.15, p.915-924.

    Christine, L., Werner, E. P., and Mathias, H., 2006, Small-scaled environmental changes: indications from stable isotopes of gastropods (Early Miocene, Korneuburg Basin, Austria): nt J Earth Sci (Geol Rundsch), n.95, p.95-106.

    Colton, H. S., 1916, On some varieties of Thais lapillus in the Mount Desert Region, a study of individual ecology: Proc. Acad. Soc. Philad., n.68, p.440-454.

    Craig, H., 1965, The measurement of oxygen isotope paleotemperature: In: E. Tongiorgi (Ed.), Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Pisa, p.3-24.

    Crame1, J. A., 1986, Late Pleistocene molluscan assemblages from the coral reefs of the Kenya coast: Coral Reefs, v.4, n.3, p.183-196.

    Cuif, J. P., Dauphin ,Y., Mutvei, H., and Denis, A., 1989, Mineralogy, chemistry and ultrastructure of the external shell layer in ten species of Haliotis with reference to Haliotis tuberculata (Mollusca: Archaeogastropoda): Bulletin of Geology Inst. Univ. Uppsala, N.S., n.15, p.7-38.

    Donald, R. P., 2004, Bringing Fossils to Life: An Introdutction to Paleobiology Second edition: The McGrew-Hill Companies, 503pp.

    Epstein, S. and Mayeda, T., 1953, Variation of 18O content of waters from natural sources: Geochimica et Cosmochimica Acta, v.4, n.5, p.213-224.

    Faure, G., 1986, Principles of isotope geology: New York, John Wiley & Sons, 589p.

    Folland, C. K., Karl, T. R., Nicholis, N., and Vinnikov, K. Ya., 1990, Observed climate variations and change. In "Climate Change: The IPCC Scientific Assessment", J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (eds.): Cambridge University Press, Cambridge, Cambridge, p.199-233.

    Foster, G. G., and Hodgson, A.N., 1998, Consumption and apparent dry matter digestibility of six intertidal macroalgae by Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae): Aquaculture, n.167, p.211-22.

    Foster, G. G., Hodgson, A.N. and Balarin, M., 1999, Effect of diet on growth rate and reproductive fitness of Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae): Marine Biology, n.134, p.307-315.

    Foster, G. G., Hodgson, A.N., and Boyd, C.S., 1999, Polysaccharolytic activity of the digestive enzymes of the macroalgal herbivore, Turbo sarmaticus (Mollusca: Vetigastropoda: Turbinidae): Comparative Biochemistry and Physiology B, n.122, p.47-52.

    Fredrik, P. A., Birger, S., and Emma, J., 1999, Surface-water seasonality from stable isotope profiles of Littorina littorea shells: Implications for paleoenvironmental reconstructions of coastal areas: PALAIOS, v.14, p.273-281

    Gentry, K., Sosdian, S., Grossman, E. L., Lear, C., Rosenthal, Y., 2004, Inferring paleoenvironments using seasonal isotope and trace-metal profiles of serially-sampled Gastropods: Aemrican Geophysical Union, Fall Meeting 2004, abstract#PP23B-1436.

    Giménez, J., Brey, T., Mackensen, A., and Penchaszadeh, P. E., 2004, Age, growth, and mortality of the prosobranch Zidona dufresnei (Donovan, 1823) in the Mar del Plata area, south-western Atlantic: Marine Biology, v.145, p.707-712.

    Grossman, E. L., and Ku T-L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects: Chemical Geology (Isotope Geosciences Section), v.59, p.59-74.

    Hays, P. D., and Grossman, E. L., 1991, Oxygen isotope in meteoric calcite cements as indicators of continental climate: Geology, v.19, p.441-444.

    Hickman, C. S., 1976, Pleurotomaria (Archaeogastropoda) in the Eocene of the northern Pacific: A review of Cenozoic biogeography and ecology of the Genus: Journal of Paleontology, v.50, n.6, p.1090-1102.

    Hickman, C. S., 1992, Interpreting the separate taphonomic fates of turbinid gastropod shells and opercula in fossil mollusk assemblages: Annual Report - Western Society of Malacologists, v.24, p.18-19.

    Hoefs, J., 1987, Stable Isotope Geochemistry: 3rd edition: Springer-Verlag, Berlin, 241p.

    Hudson, J. D., and Anderson, T. F., 1989, Ocean temperature and isotopic compositions through time: Transactions of Royal Society of Edinburgh, Earth Science, v.80, p.183-192.

    Ino, T., 1949, The effect of food on growth and coloration of the topshell (Turbo cornutus Solander): Journal of Marine Reserch, n.3, p.1-5.

    James, S. R., Michael, J. W., and Graeme, L. L., 1982, Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study: OIKOS, n.39, p.191-198.

    Johan, B., and Birger, S., 2005, Periwinkle (Littorina littorea) intrashell 18O and 13C records from the mid-Holocene Limfjord region, Denmark: a new high-resolution palaeoenvironmental proxy approach: The Holocene, v.15, n.4, p.567-575.

    Joll, L. M., 1980, Reproductive biology of two species of Turbinidae (Mollusca : Gastropoda): Australian Journal of Marine and Freshwater Research, v.31, n.3, p.319-335.

    Keith, M. L., Anderson, G. M., and Eichler, E., 1964, Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments: Geochimica et Cosmochimica Acta, v.28, p.1757-1786.

    Kimani, E. N., 1996, The larvat development and juvenile growth of the silvermouth turban, Turbo argyrostomus L. 1758 (Mollusca: Prosobranchia): Asian Marine Biology, n.13, p.105-116.

    Kitutani, K., and Yamakawa, H., 1999, Marine snails seep production towards restocking enhancement basic manual: Fisheries Department, v.14, 59p.

    Kobashi, T., and Grossman, E. L., 2003, The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38Ma) climate: Paleontological Research, v.7, n.4, p.343-355.

    Kobashi,, T., Grossman, E. L., David T., Dockery III, and Ivany, L. C., 2004, Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA): Paleocenography, v.19, PA1022 1-16.

    Koerner, R. M., and Fisher, D. A., 1990, A record of Holocene summer climate from Canadian high-Arctic ice core: Nature, n.343, p.630-631.

    Koike, H., 1980, Seasonal dating by growth-line counting of clam, Meretrix lusoria toward a reconstruction of prehistoric shell-collecting activities in Japan: Univ. Museum Bull. 18, Univ. of Tokyo.

    Kojima, S., Segawa, R., and Hayashi, I., 2000, Stability of the courses of the warm coastal currents along the Kyushu Island suggested by the population structure of the Japanese turban shell Turbo (Batillus) cornutus: Journal of Oceanography, v.56, p.601-604.

    Kutzbach, J. E., and Guetter, P. J., 1986, The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years: Journay of Atmospheric Sciences 43, p.1726-1759.
    Lai, K.-Y., 1979, Turban shells and star shell of Taiwan: Bulletin of Maiacology, ROC, n.6, p.21-32.

    Leavitt, S. W., Panyushkina, I. P., Lange, T., Wiedenhoeft, A., Cheng, L., Hunter, R. D., Hughes, J., Pranschke, F., Schneider, A. F., Moran, J., and Stieglitz, R., 2006, Climate in the Great Lakes region between 14,000 and 4,000 years ago from isotopic composition of conifer wood: Radiocarbon, v.48, n.2, p.205–217.

    Liew, P.-M., and Huang, S.-Y., 1994, A 5000-year pollen record from Chitsai Lake, central Taiwan: Terrestrial, Atmoshpere and Oceanic Science, v.5(3), p.411-419.

    Malamud-Roam, F., Dettinger, M., Ingram, B. L., Hughes, M. K., Florsheim, J. L., 2007, Holocene Climates and Connections between the San Francisco Bay Estuary and its Watershed: A Review: San Francisco Estuary and Watershed Science, v. 5, i.1, Article 3.

    Manabe, S., and Broccoli A. J., 1985, The influence of continental ice sheet on the climate of an ice age: Journal of Geophysical research, n.90, p.167-190.

    Moore, H. B., 1936, The biology of Purpara lapillus I. Shell variation in relation to environment: J. Mar. boil. Ass. U.K., n.21, p.61-89.

    Murakoshi, M., Komatsu, T., and Nakamura, R., 1993, Development of mass seed production techniques for green snail, Turbo marmoratus in Okinawa water: Suisazoshoku, n.41, p.299-309.

    Nichols, H., 1975, Palynological and paleoclimates study of the late Quaternary displacement of the boreal forest-tundra Eocene in Keewatin and MacKenzie, N.W.T.: Institute of Arctic and Alpine research occasional paper, n.15.

    Okabe, M., Kuwahara, A., Nishimura, M., and Yoshiya, M., 1989, Marine ranching of the topshell, Batillus cornutus: Jap.Fish.Res.Cons.Asso., n.40, p.94.

    O'Neil, J. R., Clyton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates: Journal of Chemical Physics, v.51, p.5547-5558.
    Penton, G. H., and Porter, S. C., 1970, Neoglaciation: Scientific of American, n.222, p.100-110.

    Phadtare, N. R., 2000, Sharp decrease in summer monsoon strength 4000-3500 cal yr B.P. in the central higher Himalaya of India based on pollen evidence from Alpine peat: Quaternary Research, p. 122-129.

    Phillip, W., 1975, Use of 65Zn to determine the field metabolism of the snail Cepaea nemoralis L.: Ecology, n.56, p.1185-1192.

    Porter, S.C., and An, Z., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation: Nature, v.375, p.305-308.

    Riera, P., Stal, L. J., Nieuwenhuize, J., 2002, d13C versus d15N of co-occurring molluscs within a community dominated by Crassostrea gigas and Crepidula fornicata (Osterschelde, The Netherlands): Marine Ecology Progress Series, v.240, p.291-295.

    Ruddiman, W. F., 2000, Earth's Climate - past and future: W. H. Freeman and company, New York, 441p.

    Savin, S. M., 1977, The history the Earth's surface temperature during the past 100 million year: Annual Review of Earth and Planetary Sciences, v.5, p.319-355.

    Schmidt, R., Kamenik, C., Tessadri, R., and Koinig, K. A., 2006, Climatic changes from 12,000 to 4,000 years ago in the Austrian Central Alps tracked by sedimentological and biological proxies of a lake sediment core: Journal of Paleolimnology, n.35, p.491–505.

    Schwarcz, H. P., 1985, Stable isotopes in human skeletons of Southern Ontario: reconstructing palaeodiet: Journal of Archaeological Science, n.12, p.187-206.

    Shackleton, N. J., 1967, Oxygen isotope analyses and Pleistocene temperatures re-assessed: Nature, v.215, p.15-17.

    Shackleton, N. J., 1969, Marine molluscs in archaeology: in Science in Archaeology (D. R. Brothwell & E. S. Higgs eds.), p.407-414.

    Shackleton, N. J., 1973, Oxygen isotope analysis as a mean of determine season of occupation of prehistoric midden sites: Archaeometry, n.15, p.133-143.

    Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: Oxygen isotope temperatures and ice volumes on 105 year and 106 year scale: Quaternary Research, v.3, p.39-55.

    Shen, C.-C., Liu, K.-K., Lee, M.-Y., Lee, T., Wang, C.-H., and Lee, H.-J., 2005, A novel method for tracing coastal water masses using Sr/Ca ratios and salinity in Nanwan Bay, southern Taiwan: Estuarine, Coastal and Shelf Science, v.65, p.135-142.

    Silver, C. S., and R. S., Defries, 1990, On Earth, On Future: Academy Press, Washington, D. C., 196p.

    Sire, J. Y., et Bonnet, P., 1984, Croissance et structure de l'opercule calcifié du gastéropode polynésien Turbo setosus (Prosobranchia: Turbinidae): détermination de l'âge individual: Marine Biology, n.79, p.75-87.

    Sosdian, S., Gentry, D. K., Grossman, E. L., Hicks D., Rosenthal, Y., 2006, Strontium to calcium ratios in the marine gastropod Conus ermineus: Growth rate effects temperature calibration: Geochemistry Geophysics Geosystems, v.7, Q11023.

    Thompson, L., 2002, African ice core analysis reveals catastrophic drought, shrinking ice fields and civilization shifts: Science Daily, Ohio State University, 2002/10/18.

    Toshiaki, F., 1993, Annual cycle of reproduction in a Turban snail, Lunella granulata, at Chinen, Okinawa: Galaxea, n.11, p.135-142.
    Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southern United States: Geological Society of America Bulletin, v.62, p.399-416.

    Vermeij, G. J., 1993, A Natural History of Shells: Princeton University Press, 241p.

    Vermeij, G. J., and Williams, S. T., 2007, Predation and the geography of opercular thickness in Turbinid Gastropods: Journal of Molluscan Studies, 73, p.67-73.

    Villiers, L., and Sire, J. Y., 1985, Growth and determination of individual age of Turbo setosus (Prosobranchia Turbinidae), Hao Atoll (Tuamotu, French Polynesia): Proceedings of The Fifth International Coral Reef Congress 5 (A), p.165-170.

    Wang, C.-H., Shieh, Y.-T., and Chen, M.-P., 1994, Holocene oxygen and carbon isotopic records of Core OR102-3 off Southeastern Taiwan: Paleoceanography implications: TAO, v.5, n.3, p.421-429.

    Weber, J. N., and Rocque, A. L., 1964, Carbon isotopic composition of lacustrine Gastropoda from pond-weed environments: Journal of Paleontology, v.38, n.5, p.965-967.

    Wei, K.-Y., 2006, Leg 195 synthesis: Site 1202-late Quaternary sedimentation and paleoceanography in the southern Okinawa Trough: In Shinohara, M., Salisbury, M. H., and Richter, C., (Eds.), Proc. ODP, Sci. Results, v.195, p.1-31.

    Williams, P. W., Marshall, A., Ford, D. C., and Jenkinson, A. V., 1999, Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand: Holocene, v.9, p.649-657.

    Worthington, D. G., and Fairweather, P. G., 1989, Shelter and food: interactions between Turbo undulatum (Archaeogastropoda: Turbinidae) and coralline algae on rocky seashores in New South Wales: J. Exp. Bio. Eco., n.129, p.61-79.

    Zinsmeister, W. J., and Camacho, H. H., 1980, Late Eocene Struthiolariidea (Mollusca: Gastropoda) from Seymour Island, Antarctic Peninsula and their significance to the biogeography of early Tertiary shallow-water faunas of the southern hemisphere: Journal of Paleontology, v.54, n.1, p.1-14.

    QR CODE