研究生: |
李冠毅 Kuan-Yi Lee |
---|---|
論文名稱: |
使用AB類/AB類開關運算放大器技術之0.7伏低功率低失真多位元三角積分調變器 A 0.7 V Low-Power Low-Distortion Multibit Delta-Sigma Modulator with Class-AB/Class-AB Switched-Opamp Technique |
指導教授: |
郭建宏
Kuo, Chien-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 111 |
中文關鍵詞: | 三角積分調變器 、低失真 、低電壓 、開關運算放大器 |
英文關鍵詞: | delta-sigma modulator, low-distortion, low-voltage, switched-OPAMP |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路隨著製程技術的進步,已進入奈米的世界。然而在類比電路的設計與實現上卻沒有明顯受益,肇因於臨界電壓並未顯著減少,這對類比電路的設計是一大考驗。特別是低電壓電路要維持與一般電壓相同之效能是一項很大的挑戰。三角積分調變器對於類比電路元件的非理想特性不敏感,常運用於高解析度之電路,再結合超取樣技術、切換式運算放大器技術及雙取樣技術,可提升電路的性能。
本論文提出在供應電壓為0.7V的操作下,適用於音頻範圍之三階多位元低通三角積分調變器,使用TSMC標準0.18微米製程下完成兩個電路,一為改良型三階低失真三角積分調變器,另一個為具數位加強的三階低失真三角積分調變器。操作於25 KHz的頻寬,取樣頻率為4 MHz,個別的最大SNDR各為79.94 dB和80.14 dB,功率消耗為0.8897 mW和0.566 mW。
Though CMOS designing technology has had great improvements, analog circuit designing hasn’t gained much benefit due to the inconspicuous decrease of the threshold-voltage. This is a big problem for analog circuit designing, especially for low-voltage circuit designs, trying to maintain high performance under low voltages. Delta-Sigma Modulators have low sensitivity on non-ideal characteristics of analog circuits, so they’re usually designed for high-resolution systems. For high performance, oversampling, switched-OPAMP, and double-sampling techniques are applied.
This thesis presents a 0.7V third-order multi-bit low-pass delta-sigma modulator. We realize two modulators by TSMC 0.18um CMOS standard process: modified and digitally enhanced third-order low-distortion delta-sigma modulator. Both operate under 25KHz bandwidth and 4MHz sampling frequency, with 79.94 dB and 80.14dB SNDR. Total power dissipation are 0.8897 mW and 0.566 mW respectively.
[1] E. E. Fabris, L. Carro, S. Bampi, “A Digitally Reconfigurable Sensor Interface for SOC Using Delta-Sigma Modulators,” IEEE Conf. Instrumentation and Measurement Technology, Sorrento, Italy 24-27, Apr. 2006.
[2] K. Noguchi, T. Hashida, M. Nagata, “On-Chip Analog Circuit Diagnosis in Systems-on-Chip Integration,” IEEE Proc. European Solid-State Circuits, ESSCIRC, Sept. 2006.
[3] D. A. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons,Inc. 1997.
[4] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp. 737-738, Jun. 2001
[5] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters:Theory, Design, and Simulation, IEEE Press, New York,1997.
[6] R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, IEEE Press, Wiley & Sons, 2005.
[7] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. on Circuits and Systems, vol. 37, pp. 309-318, Mar. 1990.
[8] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc. of IEEE Symp. on Circuits and Systems, pp.459-462, 1987.
[9] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “ A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. SC-29, pp. 1311-1317.
[10] T. Ritoniemi, T. Karema, and H. Tenhunen, “The Design of Stable High Order 1-Bit Sigma-Delta Modulators,” in Proc. IEEE Symp. CAS, pp. 3267-3270, May 1990.
[11] P. Ferguson, Jr., et al., “An 18b 20kHz Dual Sigma-Delta A/D Converter,” IEEE Int. Solid-State Circuits, Feb. 1991.
[12] G. Ahn, D. Chang, M. Brown, N. Ozaki, H. Youra, K. Hamashita, K. Takasuka, G. Temes, and U. K. Moon, “0.6-V 82-dB Delta-Sigma Audio ADC using Switched-RC Integrators,” IEEE J. Solid-State Circuits , vol. 40, no. 12, pp. 2398-2461, Dec. 2005.
[13] M. Keskin, “A Low-Voltage CMOS Switch with A Novel Clock Boosting Scheme,” IEEE Trans. Circuits Syst. II, vol. 52, pp. 185–188, Apr. 2005.
[14] M. G. Kim, G. C. Ahn, P. K. Hanumolu, S. H. Lee, S. H. Kim, S. B. You, J. W. Kim, G. C. Temes and U. K. Moon, “A 0.9 V 92 dB Double-Sampled Switched-RC Delta-Sigma Audio ADC,” IEEE J. Solid-State Circuits, vol. 43, pp. 1195-1206, May 2008.
[15] J. B. da Silva, “High-Performance Delta Sigma Analog-to-Digital Converters,” Phd Thesis, Oregon State University , July 2004.
[16] S. Au and B. H. Leung, “A 1.95V 0.34mW 12-b Sigma-Delta Modulator Stabilized by Local Feedback Loops,” IEEE J. Solid-State Circuits, vol. 32, no. 3, pp. 321-328, Mar.1997.
[17] R. T. Baird and T. S. Fiez, “Linearity Enhancement of Multibit ΔΣ A/D and D/A Converters using Data Weighted Averaging,” IEEE Trans. Circuits Syst. II, vol. 42, pp. 753–762, Dec. 1995.
[18] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE ISCAS, vol. 1, no. 3, pp. 376-379, May 2001.
[19] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, Dec. 2002.
[20] M. Steyaert, J. Crols, and S. Gogaert, “Switched-Opamp: a Technique for Realizing Full CMOS Switched-Capacitor Filters at very Low-Voltages,” in Proc. 19th Eur. Solid-State Circuits. Conf., pp. 178–181, Sep. 1993.
[21] T. Salo, S. Lindfors, and K. A. I. Halonen, “A Double-Sampling SC Resonator for Low-Voltage Bandpass Delta-Sigma Modulators,” IEEE Trans. Circuits Syst. II, vol.49, no. 12, pp. 737-747, Dec. 2002.
[22] S. Baswa, A. Lopez-Martin, J. Ramírez-Angulo, and R. G. Carvajal,“Low-Voltage Micropower Super Class-AB CMOS OTA,” Electron. Lett., vol. 40, no. 4, pp. 216–217, Feb. 2004.
[23] A. Lopez-Martin, S. Baswa, J. Ramírez-Angulo, and R. G. Carvajal, “Low-Voltage Super Class-AB CMOS OTA Cells with Very High Slew Rate and Power Efficiency,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1068–1077, May 2005
[24] J. A. Galan, A Lopez-Martin, R. G. Carvajal, J. Ramírez-Angulo,and C. Rubia-Marcos, "Super Class-AB OTAs With Adaptive Biasing and Dynamic Output Current Scaling," IEEE Trans.Circuits Syst.I, vol. 54, no. 3, pp.449-457, March 2007.
[25] V. Peluso, P. Vancorenland, A. M. Marques, M. S. Steyaert, and W. Sansen, “A 900-mV Low-Power SD A/D Converter with 77-dB Dynamic Range,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.1887–1897, Dec. 1998.
[26] R. G. Carvajal, J. Ramírez-Angulo, A. J. Lopez-Martin, A. Torralba, J.A. Galan, A. Carlosena, and F. Muñoz, “The Flipped Voltage Follower:A Useful Cell for Low-Voltage, Low-Power Circuit Design,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1276–1291, Jul. 2005
[27] Bajdechi, and J. H. Huijsing, “Systematic Design of Sigma Delta Analog-to-Digital Converter” Norwell, MA: Kluwer 2004.
[28] N. Chandra and G. W. Roberts, “Top-down Design Methodology for Analog Circuits Using MATLAB and Simulink,” in Trade-Offs in Analog Circuit Design—The Designer’s Companion. Norwell, MA: Kluwer, 2002.
[29] W. C. Song, H. W. Choi, S. U. Kwak, and B. S. Song, “A 10-b 20-Msample/s Low-Power CMOS ADC,” IEEE J. Solid-State Circuits, vol. 30, no. 5, pp. 514-521 , May 1995.
[30] C. H. Kuo and H. J. Xie, “An Ultra Low-Voltage Multibit Delta-Sigma Modulator for Audio-Band Application,” The IEEE Symp. on Circuits and Systems, Seattle, May 2008, pp. 1660-1663.
[31] Y. Tang, S. Gupta, J. Paramesh, and D. J. Allstot, “A Digital-Summing Feedforward ΔΣ Modulator and Its Application to A Cascade ADC,” Proc. IEEE Symp. on Circuits and Systems, May 2007, pp. 485-488.
[32] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, ”Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett, 2001, pp. 737-738.
[33] A. Gharbiya, and D. A. Johns, “On the Implementation of Input-Feedforward Delta-Sigma Modulators,” IEEE Trans. on circuits and systems, 53(6), pp. 453-457, 2006.
[34] H. Zare-Hoseini, I. Kale, and O. Shaoei, “Modeling of Switched-Capacitor Delta-Sigma Modulators in SIMULINK,” IEEE Trans. On Instrumentation and Measurement, vol. 54, no. 4, pp. 1646-1654, Aug 2005.
[35] S. Brigati, F. Francesconi, P. Malcovati, D. Tonietto, A. Baschirotto, and F. Maloberti, “Modeling Sigma-Delta Modulator Non-Idealities in SIMULINK(R) ,” in Proc of IEEE Symp. on Circuits and Systems, vol. 2, Jun 1999, pp. 384-387.
[36] L. Yao, M. Steyaert, and W. Sansen, “A 1-V 140-mW 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1809-1818, Nov. 2004.
[37] S. R. Norsworthy, R. Schreier, and G. C. Temes, “Delta–Sigma Data Converters Theory, Design, and Simulation,” IEEE Circuits & Systems Society, the Institute of Electrical and Electronics Engineers, Inc., New York, 1997.
[38] S. Rabii and B. A. Wooley, “The Design of Low-Voltage, Low-Power Sigma-Delta Modulator,” Kluwer academic publisher, 1999.
[39] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced High-Order Modulators,”IEEE International Conference Electronics Circuits and Systems, pp 1115-1118, Aug. 31-Sept. 3 2008
[40] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced 2nd-Order Modulatorwith Unity-Gain Signal Transfer Function, “IEEE Symp. Circuits and Systems, pp.1664 - 1667, May 2008.
[41] J. Goes, B. Vaz, R. Monteiro, and N. Paulino, “A 0.9 V SD Modulator with 80 dB SNDR and 83 dB DR Using a Single-Phase Technique,” in IEEE ISSCC Dig. Tech. Papers, 2006, pp. 74–75.
[42] K. P. Pun, S. Chatterjee, and P. R. Kinget, “A 0.5-V 74-dB SNDR 25-kHz Continuous-Time Delta-Sigma Modulator with a Return-To-Open DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 496–507, Mar. 2007.
[43] J. Roh, S. Byun, Y. Choi, H. Roh, Y.G. Kim, and J.K. Kwon, “A 0.9-V 60-W 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range“IEEE Journal Solid-State Circuits, Vol. 43, Iss.2, pp.361 - 370 , Feb. 2008