研究生: |
蔡涵容 Tsai, Han-Jung |
---|---|
論文名稱: |
可延緩Aβ誘發神經不正常去極化之中草藥純物質 A pure compound from Chinese herbal medicine for ameliorating the Aβ-induced abnormal depolarization |
指導教授: |
林炎壽
Lin, Yenshou |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 中草藥 、神經元 、麩胺酸 、阿茲海默氏症 、β類澱粉蛋白 、膜電位螢光染劑 |
英文關鍵詞: | Alzheimer disease, N-methyl-D-aspartate receptor |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症是一種隨著時間漸漸惡化的重度失智症。目前對於造成阿茲海默氏症發病原因的假說是:因為神經細胞類澱粉前驅蛋白APP的不正常剪切修飾以及神經細胞內骨架蛋白tau的過度磷酸化,最終造成神經細胞壞死,進而使病患失智。有研究指出,β類澱粉蛋白所具有的神經毒性會影響大腦皮質神經元及海馬迴區域麩胺酸的訊息傳遞路徑,並破壞麩胺酸訊息傳遞所調控的學習以及記憶。神經訊息傳導物質麩胺酸自突觸前神經元大量釋出後,會與突觸後神經元細胞膜上的麩胺酸受器AMPA、NMDA、Kainate、mGluR1/3/5結合。為了抑制β類澱粉蛋白誘發的神經毒性,有一種NMDA受器的拮抗劑名為Memantine的藥物,已在臨床中使用於治療重症阿茲海默氏症患者。由於中草藥已被廣泛使用數千年,此研究想從中草藥篩選出能減緩β類澱粉蛋白所誘發的神經損害。實驗使用出生一到三天的小鼠,分離出其大腦神經元進行初級培養,使用免疫螢光染色法和西方墨點法檢驗如vGLUT1/2、AMPAR、PSD95、Type III tubulin這些特殊的標記來確認麩胺酸神經元的純度以及神經軸的形成。再者,使用感應膜電位變化的螢光染劑DiBAC4(3)來偵測神經細胞膜電位的變化。我們使用這個平台來篩選抑制β類澱粉蛋白誘導去極化的中草藥。從四十多種中草藥目前找到六種具有此特性的中草藥單方,其中兩種命名為P1031及1057,在分析主成分其中之純物質P1031-PN及P1057-CC做進一步作用機轉的探討,發現P1031-PN可抑制β類澱粉蛋白所誘發神經不正常的去極化,其作用機轉之一為透過抑制NMDA受器所誘發的去極化,更進一步探討此純物質作用的訊息傳遞機制後,將可能發展成為治療阿茲海默氏症的藥物。
Alzheimer disease (AD), a deteriorate neurodegenerative disease, is the most common form of dementia. Abnormal β-amyloid (Aβ) and tau protein plaque accumulation can be observed in patients’ brains by which cause neuronal death and finally become dementia. Currently, the prevailing hypothesis of AD is thought to due to β-amyloid precursor protein (APP) abnormally splicing and tau protein hyperphosphorylation. Glutamate, the neurotransmitter at many excitatory synapses in the central nervous system, binds to glutamate receptor such as AMPA, NMDA, Kainate, and mGluR1/3/5. Researches indicate that the neurotoxicity of Aβ results from the over-stimulation of glutamate through NMDA receptor at postsynapses. Therefore memantine, a NMDA receptor inhibitor, is effective on treating the moderate-to-severe AD patients. In this study, we screen Chinese herbal medicines for ameliorating the Aβ-induced depolarization in neurons. We established the primary culture of cortical neurons by sacrificing postnatal mice at day 1-3. These neurons had been characterized by markers of glutamatergic neurons and neuronal networks such as vGLUT1/2, AMPAR, PSD95, type III tubulin. After stimulated by glutamates or Aβ, these neurons become depolarization indicating by voltage sensitive dye DiBAC4(3). Using this plateform, we found 6 out of 40 Chinese herbal medicines which are capable to block the Aβ-induced depolarization. We focus on two of them named P1031 and P1057 and their pure compounds. We found P1031-PN can inhibit Aβ-induced abnormal depolarization. The mechanism is through the inhibition of AMPAR/ NMDAR pathway. This pure compound is hopefully to become a lead compound on therapeutic purpose of Alzheimer disease.
Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1-14.
Areosa SA, Sherriff F, McShane R (2005) Memantine for dementia. Cochrane Database Syst Rev 20.
Berchtold NC, Cotman CW (1998) Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman period to the 1960s. Neurobiol Aging 19:173-189.
Berridge MJ, Bootman MD, Lipp P (1998) Calcium--a life and death signal. Nature 395:645-648.
Bhatia R, Lin H, Lal R (2000) Fresh and globular amyloid beta protein (1-42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. Faseb j 14:1233-1243.
Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3:437-448.
Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer's disease. J Neural Transm Suppl 53:127-140.
Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protocols 2:1490-1498.
Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 17:641-652.
Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, Lipton SA (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427-4436.
Chen X, Yan SD (2006) Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer's disease. IUBMB Life 58:686-694.
De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590-11601.
De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and gamma-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2:a006304.
Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294-17300.
Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 107:18670-18675.
Epps DE, Wolfe ML, Groppi V (1994) Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Chem Phys Lipids 69:137-150.
Francis PT (2003) Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry 18:S15-21.
Ghosh AK, Gemma S, Tang J (2008) beta-Secretase as a therapeutic target for Alzheimer's disease. Neurotherapeutics 5:399-408.
Goedert M, Spillantini MG, Crowther RA (1991) Tau proteins and neurofibrillary degeneration. Brain Pathol 1:279-286.
Gopalakrishnan M, Molinari EJ, Shieh CC, Monteggia LM, Roch JM, Whiteaker KL, Scott VE, Sullivan JP, Brioni JD (2000) Pharmacology of human sulphonylurea receptor SUR1 and inward rectifier K(+) channel Kir6.2 combination expressed in HEK-293 cells. Br J Pharmacol 129:1323-1332.
Gopalakrishnan M, Whiteaker KL, Molinari EJ, Davis-Taber R, Scott VE, Shieh CC, Buckner SA, Milicic I, Cain JC, Postl S, Sullivan JP, Brioni JD (1999) Characterization of the ATP-sensitive potassium channels (KATP) expressed in guinea pig bladder smooth muscle cells. J Pharmacol Exp Ther 289:551-558.
Guerreiro RJ, Gustafson DR, Hardy J (2012) The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging 33:437-456.
Guo RB, Wang GF, Zhao AP, Gu J, Sun XL, Hu G (2012) Paeoniflorin Protects against Ischemia-Induced Brain Damages in Rats via Inhibiting MAPKs/NF-κB-Mediated Inflammatory Responses. PLoS One 7.
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101-112.
Inoue S (2008) In situ Abeta pores in AD brain are cylindrical assembly of Abeta protofilaments. Amyloid 15:223-233.
Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925-937.
Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, Simon A, Delacourte A, Giros B, Epelbaum J, Betancur C, El Mestikawy S (2008) Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging 29:1619-1630.
Kawahara M, Negishi-Kato M, Sadakane Y (2009) Calcium dyshomeostasis and neurotoxicity of Alzheimer's beta-amyloid protein. Expert Rev Neurother 9:681-693.
Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18.
Kim J, Sasaki Y, Yoshida W, Kobayashi N, Veloso AJ, Kerman K, Ikebukuro K, Sode K (2013) Rapid cytotoxicity screening platform for amyloid inhibitors using a membrane-potential sensitive fluorescent probe. Anal Chem 85:185-192.
LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 3:862-872.
Larson J, Lynch G, Games D, Seubert P (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 840:23-35.
Lee SJ, Lee HK, Jung MK, Mar W (2006) In vitro antiviral activity of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose against hepatitis B virus. Biol Pharm Bull 29:2131-2134.
Lee SM, Yoon MY, Park HR (2008) Protective effects of Paeonia lactiflora pall on hydrogen peroxide-induced apoptosis in PC12 cells. Biosci Biotechnol Biochem 72:1272-1277.
Lichtenthaler SF (2011) alpha-secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential. J Neurochem 116:10-21.
Lin Y, Khokhlatchev A, Figeys D, Avruch J (2002) Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. The Journal of biological chemistry 277:47991-48001.
Lipton SA, Chen HS (2005) Paradigm shift in NMDA receptor drug development: Expert Opin Ther Targets. 2005 Jun;9(3):427-9.
Liu H, Wang J, Wang J, Wang P, Xue Y (2015) Paeoniflorin attenuates Abeta-induced inflammation and chemotaxis of microglia in vitro and inhibits NF-kappaB- and VEGF/Flt-1 signaling pathways. Brain Res.
Liu J, Jin DZ, Xiao L, Zhu XZ (2006) Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and brain damage in rats. Brain Res 1089:162-170.
Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Jr., Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology 56:127-129.
McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337-388.
Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269-278.
Mills J, Reiner PB (1999) Regulation of amyloid precursor protein cleavage. J Neurochem 72:443-460.
Morkuniene R, Cizas P, Jankeviciute S, Petrolis R, Arandarcikaite O, Krisciukaitis A, Borutaite V (2015) Small Abeta1-42 oligomer-induced membrane depolarization of neuronal and microglial cells: role of N-methyl-D-aspartate receptors. J Neurosci Res 93:475-486.
Mount C, Downton C (2006) Alzheimer disease: progress or profit? Nat Med 12:780-784.
Murphy MP, LeVine H, 3rd (2010) Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 19:311-323.
Parsons CG, Gilling K (2007) Memantine as an example of a fast, voltage-dependent, open channel N-methyl-D-aspartate receptor blocker. Methods Mol Biol 403:15-36.
Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362:329-344.
Robinson SR (2001) Changes in the cellular distribution of glutamine synthetase in Alzheimer's disease. J Neurosci Res 66:972-980.
Selkoe DJ, Schenk D (2003) Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545-584.
Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051-1058.
Song MS, Rauw G, Baker GB, Kar S (2008) Memantine protects rat cortical cultured neurons against beta-amyloid-induced toxicity by attenuating tau phosphorylation. Eur J Neurosci 28:1989-2002.
St George-Hyslop PH, Petit A (2005) Molecular biology and genetics of Alzheimer's disease. C R Biol 328:119-130.
Sun R, Wang K, Wu D, Li X, Ou Y (2012) Protective effect of paeoniflorin against glutamate-induced neurotoxicity in PC12 cells via Bcl-2/Bax signal pathway. Folia Neuropathol 50:270-276.
Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120:545-555.
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572-580.
Tsai JY, Wolfe MS, Xia W (2002) The search for gamma-secretase and development of inhibitors. Curr Med Chem 9:1087-1106.
Tsumoto T (1990) Excitatory amino acid transmitters and their receptors in neural circuits of the cerebral neocortex. Neurosci Res 9:79-102.
Vassar R (2002) Beta-secretase (BACE) as a drug target for Alzheimer's disease. Adv Drug Deliv Rev 54:1589-1602.
Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem 275:5626-5632.
Wang HY, Li W, Benedetti NJ, Lee DH (2003) Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278:31547-31553.
Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Abeta25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34:227-234.
Wang X, Perry G, Smith MA, Zhu X (2010) Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener Dis 7:56-59.
Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, Imaizumi Y (2001) Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol 86:342-350.