研究生: |
蔡承育 Cai, Cheng-Yu |
---|---|
論文名稱: |
飛灰/兩性離子型複合水膠作為混凝土自養護劑的可行性研究 Feasibility study of fly ash/amphoteric hydrogel composite as a concrete self-curing agent |
指導教授: |
許貫中
Hsu, Kung-Chung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 兩性離子型 、水膠 、合成 、飛灰 、砂漿 、混凝土 、抗壓強度 、内部濕度 、乾縮 、自體收縮 |
英文關鍵詞: | synthetic, fly ash, compressive, dry shrinkage |
DOI URL: | http://doi.org/10.6345/NTNU202001116 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,學者們提出使用吸水性材料作為自養護劑添加到混凝土中可以有效的改善混凝土的性質,因此本論文主要目的為製備一種飛灰/兩性離子型複合水膠(FA/PDA)作為混凝土的自養護劑,水膠使用丙烯醯胺(AM)、N,N-二甲基胺-3-β-羧基丙烯酸乙酯乙酸鈉鹽(DCA)和飛灰(FA)合成,合成後使用FT-IR光譜作結構鑑定和探討單體比例、起始劑劑量、交聯劑劑量、飛灰含量對於水膠在各種水溶液下吸水率的影響。
將FA/PDA水膠加到水泥砂漿和混凝土中,作為自養護劑時,探討水膠添加量及水膠內飛灰比例的含量,對於水泥砂漿和混凝土抗壓強度、內部濕度、乾縮量和自體收縮量的影響。
將FA/PDA水膠置於水溶液中,在吸水率在一開始會先快速的上升,然後趨於平穩後即達到飽和吸水率,實驗結果顯示,FA/PDA水膠,吸水率會隨AM比例、交聯劑劑量、起始劑劑量和飛灰含量增加而增加,當AM/DCA= 3 MBA= 0.3 mole%, APS= 0.5 mole%,FA = 15 wt%有最高的吸水率。
FA/PDA水膠在去離子水中、0.1M NaCl(aq)、0.1MCaCl2(aq)、Pore solution和水泥漿濾液中的最高的吸水率分別為398.07g/g 、129.63 g/g、116.5 g/g、116.38g/g、73.44 g/g。
將FA/PDA水膠加入水泥砂漿和混凝土中,抗壓強度隨著水膠量的添加而上升,當水膠劑量為0.2 wt%時有最高的強度,在添加不同種類的FA/PDA水膠發現,飛灰含量為15 wt%的FA/PDA水膠,對水泥砂漿和混凝土的抗壓強度和內部濕度增加、乾縮量和自體收縮量減少,有最好的提升效果。
In recent years, scientists have proposed that the use of absorbent materials as self-curing agents added to concrete can effectively improve the properties of concrete. Therefore, the main purpose of this paper is to prepare a fly ash/amphoteric ionic composite hydrogel (FA/PDA) as a self-curing agent for concrete, The hydrogel is synthesized using acrylamide (AM), N,N-dimethylamine-3-β-carboxyethyl acrylate sodium salt (DCA) and fly ash (FA). After synthesis, FT-IR spectroscopy is used as structure identification and discussion on the influence of monomer ratio, initiator dosage, crosslinking agent dosage, and fly ash content on the water absorption of water glue in various aqueous solutions.
Discuss the amount of hydrogel added and the proportion of fly ash in the hydrogel, and the impact on the compressive strength, internal humidity, shrinkage and autogenous shrinkage of cement mortar and concrete, when FA/PDA hydrogel is added to cement mortar and concrete.
The experimental results show that when the FA/PDA hydrogel is placed in an aqueous solution, the water absorption rate will increase rapidly at the beginning, and then reach the saturated water absorption rate after it stabilizes. The water absorption rate of the FA/PDA hydrogel will vary with the AM ratio, cross-linking agent dosage, initiator dosage and fly ash content increase with the increase. When AM/DCA= 3 MBA= 0.3 mole%, APS= 0.5 mole%, FA = 15 wt%, the highest water absorption rate.
The highest water absorption rates of FA/PDA hydrogel in deionized water, 0.1M NaCl(aq), 0.1M CaCl2(aq), pore solution and cement slurry filtrate are398.07g/g 、129.63 g/g、116.5 g/g、116.38g/g、73.44 g/g, respectively
When FA/PDA hydrogel is added to cement mortar and concrete, the compressive strength increases with the addition of the amount of hydrogel. When the amount of hydrogel is 0.2 wt%, it has the highest strength. When adding different types of FA/PDA The hydrogel found that the fly ash content of the hydrogel is 15 wt%, which has the best effect on increasing the compressive strength and internal humidity of cement mortar and concrete, as well as reducing the amount of dry shrinkage and self-shrinkage.
1.Ji, X.; Wu, R.-T.; Long, L.; Guo, C.; Khashab, N. M.; Huang, F.; Sessler, J. L., Physical Removal of Anions from Aqueous Media by Means of a Macrocycle-Containing Polymeric Network. Journal of the American Chemical Society 2018, 140 (8), 2777-2780.
2.Zhang, M.; Yin, Q.; Ji, X.; Wang, F.; Gao, X.; Zhao, M., High and fast adsorption of Cd(II) and Pb(II) ions from aqueous solutions by a waste biomass based hydrogel. Scientific Reports 2020, 10 (1), 3285.
3.Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J., A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances 2018, 8 (14), 7533-7549.
4.Kamoun, E. A.; Kenawy, E.-R. S.; Chen, X., A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research 2017, 8 (3), 217-233.
5.Li, J.; Mooney, D. J., Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016, 1 (12), 16071.
6.Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
7.Ashley, G. W.; Henise, J.; Reid, R.; Santi, D. V., Hydrogel drug delivery system with predictable and tunable drug release and degradation rates. 2013, 110 (6), 2318-2323.
8.Wang, K.; Hao, Y.; Wang, Y.; Chen, J.; Mao, L.;Deng, Y.; Chen, J.; Yuan, S.; Zhang, T.; Ren, J.; Liao, W., Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering. International Journal of Polymer Science 2019, 2019, 3160732.
9.Krafcik, M. J.; Macke, N. D.; Erk, K. A., Improved Concrete Materials with Hydrogel-Based Internal Curing Agents. Gels 2017, 3 (4), 46.
10.Thakur, S.; Thakur, V. K.; Arotiba, O. A., History, Classification, Properties and Application of Hydrogels: An Overview. In Hydrogels: Recent Advances, Thakur, V. K.; Thakur, M. K., Eds. Springer Singapore: Singapore, 2018; pp 29-50.
11.Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 2015, 6 (2), 105-121.
12.Fanta, G. F.; Burr, R. C.; Russell, C. R.; Rist, C. E., Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition. Journal of Applied Polymer Science 1966, 10 (6), 929-937.
13.Jeong, D.; Joo, S.-W.; Hu, Y.; Shinde, V. V.; Cho, E.; Jung, S., Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. European Polymer Journal 2018, 105, 17-25.
14.Yan, Q.-Z.; Zhang, W.-F.; Lu, G.-D.; Su, X.-T.; Ge, C.-C., Frontal Copolymerization Synthesis and Property Characterization of Starch-graft-poly(acrylic acid) Hydrogels. Chemistry – A European Journal 2005, 11 (22), 6609-6615.
15.Capanema, N. S. V.; Mansur, A. A. P.; de Jesus, A. C.; Carvalho, S. M.; de Oliveira, L. C.; Mansur, H. S., Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International Journal of Biological Macromolecules 2018, 106, 1218-1234.
16.Lin, C.-C.; Anseth, K. S., PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharmaceutical Research 2009, 26 (3), 631-643.
17.Adelnia, H.; Blakey, I.; Little, P. J.; Ta, H. T., Hydrogels Based on Poly(aspartic acid): Synthesis and Applications. Front Chem 2019, 7, 755-755.
18.Kandow, C. E.; Georges, P. C.; Janmey, P. A.; Beningo, K. A., Polyacrylamide Hydrogels for Cell Mechanics: Steps Toward Optimization and Alternative Uses. In Methods in Cell Biology, Academic Press: 2007; Vol. 83, pp 29-46.
19.Lanzalaco, S.; Armelin, E., Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels 2017, 3 (4), 36.
20.Lv, Q.; Shen, Y.; Qiu, Y.; Wu, M.; Wang, L., Poly(acrylic acid)/poly(acrylamide) hydrogel adsorbent for removing methylene blue. Journal of Applied Polymer Science 2020, n/a (n/a), 49322.
21.Radu-Wu, L. C.; Yang, J.; Wu, K.; Kopecek, J., Self-assembled hydrogels from poly[N-(2-hydroxypropyl)methacrylamide] grafted with beta-sheet peptides. Biomacromolecules 2009, 10 (8), 2319-2327.
22.Hosseinzadeh, H.; Abbasian, M.; Hassanzadeh, S., Synthesis, characterization and swelling behavior investigation of gelatin-g-Poly(Acrylic Acid-co-Itaconic Acid). Quarterly Journal of Iranian Chemical Communication 2014, 2 (Issue 3, pp. 162-231, Serial No. 4), 196-208.
23.Garcı́a, D. M.; Escobar, J. L.; Bada, N.; Casquero, J.; Hernáez, E.; Katime, I., Synthesis and characterization of poly(methacrylic acid) hydrogels for metoclopramide delivery. European Polymer Journal 2004, 40 (8), 1637-1643.
24.Mohan, Y. M.; Premkumar, T.; Joseph, D. K.; Geckeler, K. E., Stimuli-responsive poly(N-isopropylacrylamide-co-sodium acrylate) hydrogels: A swelling study in surfactant and polymer solutions. Reactive and Functional Polymers 2007, 67 (9), 844-858.
25.Nie, X.;Adalati, A.; Du, J.; Liu, H.; Xu, S.; Wang, J., Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Applied Clay Science 2014, 97-98, 132-137.
26.Gharekhani, H.; Olad, A.; Mirmohseni, A.; Bybordi, A., Superabsorbent hydrogel made of NaAlg-g-poly(AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydrate Polymers 2017, 168, 1-13.
27.Xu, S.; Wu, R.; Huang, X.; Cao, L.; Wang, J., Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride). Journal of Applied Polymer Science 2006, 102 (2), 986-991.
28.Lee, W.-F.; Lin, G.-H., Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly[sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. Journal of Applied Polymer Science 2001, 79 (9), 1665-1674.
29.Lee, W.-F.; Chen, C.-F., Poly(2-hydroxyethyl methacrylate-co-sulfobetaine)s hydrogels: 3. Synthesis and swelling behaviors of the [2-hydroxyethyl methacrylate-co-N,N’-dimethyl (acrylamido propyl) ammonium propane sulfonate] hydrogels. Polymer Gels and Networks 1998, 6 (6), 493-511.
30.Ilčíková, M.; Tkac, J.; Kasák, P., Switchable Materials Containing Polyzwitterion Moieties. Polymers 2015, 7, 2344-2370.
31.Bhatnagar, A. K.; Kumar, R.; Singh, V. P.; Pandey, D. S. J. C. S., Hydrogels:A Boon for Increasing Agricultural Productivity in Water-Stressed Environment. 2016, 111, 1773.
32.Mohan, Y. M.; Murthy, P. S. K.; Sreeramulu, J.; Raju, K. M., Swelling behavior of semi-interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and poly(acrylamide-co-sodium methacrylate). Journal of Applied Polymer Science 2005, 98 (1), 302-314.
33.Meng, Y.; Lu, J.; Cheng, Y.; Li, Q.; Wang, H., Lignin-based hydrogels: A review of preparation, properties, and application. International Journal of Biological Macromolecules 2019, 135, 1006-1019.
34.Zhu, Q. In Effect of multivalent ions on the swelling and mechanical behavior of superabsorbent polymers (SAPs) for mitigation of mortar autogenous shrinkage, 2014.
35.Zhu, Q.; Barney, C. W.; Erk, K. A., Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Materials and Structures 2015, 48 (7), 2261-2276.
36.Mahdavinia, G. R.; Zohuriaan-Mehr, M. J.; Pourjavadi, A., Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN. Polymers for Advanced Technologies 2004, 15 (4), 173-180.
37.Feng, J.; Sun, J.; Yan, P., The Influence of Ground Fly Ash on Cement Hydration and Mechanical Property of Mortar. Advances in Civil Engineering 2018, 2018, 4023178.
38.工業化學概論. 五洲: 1999.
39.Bensted, J., Hydration of Portland Cement. In Advances in Cement Technology, Ghosh, S. N., Ed. Pergamon: 1983; pp 307-347.
40.Jolicoeur, C.; Simard, M.-A., Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts. Cement and Concrete Composites 1998, 20 (2), 87-101.
41.Slowik, V.; Hübner, T.; Schmidt, M.; Villmann, B., Simulation of capillary shrinkage cracking in cement-like materials. Cement and Concrete Composites 2009, 31 (7), 461-469.
42.Bissonnette, B. t.; Pierre, P.; Pigeon, M., Influence of key parameters on drying shrinkage of cementitious materials. Cement and Concrete Research 1999, 29 (10), 1655-1662.
43.Zhang, Z.; Scherer, G. W., Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils. Cement and Concrete Composites 2020, 111, 103625.
44.Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; Wang, H., Autogenous shrinkage of high performance concrete: A review. Construction and Building Materials 2017, 149, 62-75.
45.Jensen, O. M.; Lura, P., Techniques and materials for internal water curing of concrete. Materials and Structures 2006, 39 (9), 817-825.
46.Bentur, A.; Igarashi, S.-i.; Kovler, K., Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cement and Concrete Research 2001, 31 (11), 1587-1591.
47.Bentz, D. P.; Snyder, K. A., Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. Cement and Concrete Research 1999, 29 (11), 1863-1867.
48.Pytlik, D.; Bilek, V.; Bambuchova, M., Internal curing of HPC with hydrogel. IOP Conference Series: Materials Science and Engineering 2018, 385, 012043.
49.Shang, X.;Zhan, B.; Li, J.; Zhong, R., Novel microcapsules for internal curing of high-performance cementitious system. Scientific Reports 2020, 10 (1), 8318.
50.Schröfl, C.; Snoeck, D.; Mechtcherine, V., A review of characterisation methods for superabsorbent polymer (SAP) samples to be used in cement-based construction materials: report of the RILEM TC 260-RSC. Materials and Structures 2017, 50 (4), 197.
51.Liu, J.; Ou, Z.; Mo, J.; Wang, Y.; Wu, H., The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Construction and Building Materials 2017, 155, 239-249.
52.Shen, D.; Wang, T.; Chen, Y.;Wang, M.; Jiang, G., Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete. Construction and Building Materials 2015, 99, 246-253.
53.He, Z.; Shen, A.; Guo, Y.; Lyu, Z.; Li, D.; Qin, X.; Zhao, M.; Wang, Z., Cement-based materials modified with superabsorbent polymers: A review. Construction and Building Materials 2019, 225, 569-590.
54.Chindasiriphan, P.; Yokota, H.; Pimpakan, P., Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials 2020, 233, 116975.
55.Li, D.; Chen, B.; Chen, X.; Fu, B.; Wei, H.; Xiang, X., Synergetic effect of superabsorbent polymer (SAP) and crystalline admixture (CA) on mortar macro-crack healing. Construction and Building Materials 2020, 247, 118521.
56.Schröfl, C.; Mechtcherine, V.; Gorges, M., Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cement and Concrete Research 2012, 42 (6), 865-873.
57.Jensen, O. M.; Hansen, P. F., Water-entrained cement-based materials: II. Experimental observations. Cement and Concrete Research 2002, 32 (6), 973-978.
58.Chen, H.; Wyrzykowski, M.; Scrivener, K.; Lura, P., Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution. Cement and Concrete Research 2013, 49, 38-47.
59.Assmann, A.; Reinhardt, H. W., Tensile creep and shrinkage of SAP modified concrete. Cement and Concrete Research 2014, 58, 179-185.
60.Snoeck, D.; Van Tittelboom, K.; Steuperaert, S.; Dubruel, P.; De Belie, N., Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers. Journal of Intelligent Material Systems and Structures 2012, 25 (1), 13-24.
61.Wong, H. S., 17 - Concrete with superabsorbent polymer. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, Pacheco-Torgal, F.; Melchers, R. E.; Shi, X.; Belie, N. D.; Tittelboom, K. V.; Sáez, A., Eds. Woodhead Publishing: 2018; pp 467-499.