簡易檢索 / 詳目顯示

研究生: 林彥蓁
論文名稱: 利用X光吸收光譜分析燃料電池陰陽極觸媒FexPt1-x與Fe1-xPtRux之表面組成與電催化特性
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 燃料電池陰陽極觸媒x光吸收光譜
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇旨在研究兩元及三元觸媒結構與電催化活性的關係。作為陰極觸媒之FePt是一種比單純Pt具較高氧氣還原反應活性之合金,而作為陽極觸媒之FePtRu,其主要是用於測是對CO剝除與甲醇催化的效果。利用XAS中的EXAFS數據分析結構及表面組成,並觀察其以旋轉電極測試之CO剝除、甲醇催化與氧氣還原反應的影響。FePt系列與FePtRu系列樣品粒徑大小皆約為3-5 nm,關於這兩系列研究所用到的儀器與分析主要為XRD、TEM與XAS。

    陰極催化方面,在FePt系列觸媒中以FePt11具有最好的氧氣還原活性,根據文獻與表面組成,發現FePt11具有最適當的5d空軌域有助於氧氣還原。另外在陽極催化方面,以FePtRu 10hr催化能力最好,推測其表面組成最接近一比一比一,電子間提供-接受達平衡,因此表現最好。

    目錄 總目錄...............................................................................................................Ⅰ 中文摘要...........................................................................................................Ⅳ 英文摘要...........................................................................................................Ⅴ 第一章 緒論.......................................................................................................1 1.1 前言..............................................................................................................1 1.2 燃料電池簡介..............................................................................................2 1.2.1 燃料電池的種類...............................................................................4 1.2.2 燃料電池內的電化學反應...............................................................5 1.3 直接甲醇燃料電池( Direct methanol fuel cell )發展..................................9 1.3.1 DMFC陽極觸媒..............................................................................10 1.3.2 DMFC電解質..................................................................................13 1.3.3 DMFC陰極材料..............................................................................14 1.4 研究動機與方法........................................................................................20 第二章 原理.....................................................................................................21 2.1 X光吸收光譜原理..............................................................................21 2.1.1 X光吸收近邊緣結構 (XANES).....................................................21 2.1.2延伸X光吸收微細結構 (EXAFS).................................................23 2.1.3 數據分析.........................................................................................27 2.2 粉末X光繞射光譜(Powder X-ray Diffration)...........................................32 2.3穿透式電子顯微鏡(Transmission electron Microscopy)...........................34 2.4 電化學原理................................................................................................36 2.4.1 循環伏安法.....................................................................................36 2.4.2 極化曲線.........................................................................................40 2.4.3 旋轉盤電極(Rotating Disc Electrode, RDE).................................41 第三章 實驗部份.............................................................................................44 3.1 實驗藥品及設備........................................................................................44 3.1.1 實驗藥品.........................................................................................44 3.1.2 實驗設備.........................................................................................46 3.2 樣品合成....................................................................................................47 3.2.1碳黑之前處理..................................................................................47 3.2.2 合成FePt奈米粒子.........................................................................48 3.2.3 合成FePtRu奈米粒子....................................................................48 3.2.4 觸媒製備.........................................................................................49 3.3 材料鑑定與分析........................................................................................49 3.3.1 XRD分析.........................................................................................49 3.3.2 TEM分析.........................................................................................50 3.4 電化學特性測試........................................................................................50 3.4.1 電極之清洗...................................................................................51 3.4.2電極片製備.....................................................................................52 3.4.3電化學特性量測.............................................................................52 3.4.3.1 循環伏安..........................................................................53 3.4.3.2 CO剝除測試.....................................................................53 3.4.3.3 甲醇氧化極化曲線..........................................................53 3.4.3.4 氧氣還原測試..................................................................53 3.5 X光吸收光譜(XAS)................................................................................54 3.5.1 EXAFS之曲線適配.........................................................................54 3.5.2 以X光吸收光譜分析觸媒結構.....................................................55 第四章 結果與討論..........................................................................................59 4.1 陰極觸媒材料.............................................................................................59 4.1.1 合成FePt奈米粒子........................................................................59 4.1.2 材料之晶相與形態分析.................................................................60 4.1.3 XANES之吸收係數.....................................................................64 4.1.4 X光吸收光譜...............................................................................64 4.1.4.1 X光吸收近邊緣結構(XANES).......................................64 4.1.4.2 延伸X光吸收微細結構(EXAFS)....................................66 4.1.5 觸媒材料之結構比較.....................................................................70 4.1.6 電化學特性量測結果.....................................................................72 4.1.6.1 循環伏安法........................................................................72 4.1.6.2 線性掃描伏安法................................................................74 4.1.7 陰極觸媒電化學活性之比較.........................................................76 4.2 陽極觸媒材料.............................................................................................77 4.2.1 合成FePtRu奈米粒子...................................................................77 4.2.2 材料之晶相與形態分析.................................................................77 4.2.3 XANES之吸收係數.....................................................................80 4.2.4 X光吸收光譜...............................................................................80 4.2.4.1 X光吸收近邊緣結構(XANES)..........................................80 4.2.4.2延伸X光吸收微細結構(EXAFS)......................................83 4.2.5觸媒材料之結構比較.......................................................................88 4.2.6 電化學特性量測結果.....................................................................90 4.2.6.1 循環伏安法........................................................................90 4.2.6.2 線性掃描伏安法................................................................93 4.2.6.3 CO剝除...............................................................................94 4.2.6.4 甲醇氧化極化曲線............................................................96 4.2.7 陽極觸媒材料之電化學活性比較.................................................98 第五章 結論...................................................................................................101 5.1 結論..........................................................................................................101 5.2 未來展望..................................................................................................102 第六章 參考資料...........................................................................................102

    [1]. 李世光,孫美芳,"我國發展新興科技微機電系統與奈米技術的人才培育與發展策略初探~”,生物醫學報導,14 (2002) 5.
    [2]. Carrette, L.; Friedrich, K. A.; and Stimming, U.; Fuel Cell 1(2001) 1.
    [3]. 薛康琳, 燃料電池內的電化學反應-觸媒與反應動力, CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) March. 62 (2004) 149.
    [4]. Hogarth, M. P.; Ralph, T. R. Platinum Met. Rev. 2002, 46, 146.
    [5]. Sundmacher, K.; Schultz, K.; Zhou, S.; Scott, K.; Ginkel, M.; Gilles, E. D., Chem. Eng. Sci., 2001, 56, 333.
    [6]. Yang, H.; Vante, A. N.; Lége, J. M.; Lamy, C. J. Phys. Chem. B 2004, 108, 1938.
    [7]. Li, W.; Liang, C.; Zhou, W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q., J. Phys. Chem. B, 2003, 107, 6292.
    [8]. Hubert, A.; Gasteiger, N.; Markvoic, N. M.; Philip, N.; Ross, P. N., J. Phys. Chem., 1995, 99, 8290.
    [9]. Steigerwalt, E. S.; Deluga, G. A.; Cliffel, D. E.; Lukehart, C. M., J. Phys. Chem B., 2001, 105, 8097.
    [10]. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R., Catal. Today, 1997, 38, 425.
    [11]. Liu, R.; Iddir, H.; Fan, Q.; Hou, G.; Bo, A.; Ley, K. L.; Smotkin, E. S., J. Phys. Chem. B, 2000, 104, 3518.
    [12]. Lin, W. F.; Zei, M. S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W., J. Phys. Chem. B, 1999, 103, 6968.
    [13]. Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Jr.; Cairns, E., J. Phys. Chem., 1993, 97 12020.
    [14]. Rauhe, B. R.; McLarnon, F. R.; Cairns, E. J., J Electrochem. Soc., 1995, 142, 1073.
    [15]. Brankovic, S. R.; Marinkovic, N. S.; Wang, J. X.; Adžić, R. R., J. Electroanal. Chem., 2002, 532, 57.
    [16]. Lu, C.; Rice, C.; Masel, R. I.; Babu, P. L.; Waszczuk, P.; Kim, H. S.; Oldfoeld, E.; Wieckowaki, A., J. Phys. Chem. B, 2002, 106, 9581.
    [17]. Huang, J.; Liu, Z.; He, C.; Gan, L. M. J. Phys. Chem. B, 2005, 109, 16644.
    [18]. Luo, J.; Njoki, P. N.; Lin, Y.; Mott, D.; Wang, L.; Zhong, C. J. Langmuir, 2006, 22, 2892.
    [19]. Liu, Z.; Guo, B.; Hong, L.; Lim, T. H. Electrochemistry Communications, 2006, 8, 83.
    [20]. Santiago, E. I.; Giz, M. J.; Ticianelli, E. A. Journal of solid state electrochemistry , 2003, 7, 607.
    [21]. Yim, S. D.; Park, G. G.; Sohn, Y. J.; Lee, W. Y.; Yoon, Y. G.; Yang, T. H.; Um, S.; Yu, S. P.; Csinternational Jourmal of hydrogen energy, 2005, 30, 1345.
    [22]. (a) Siani, A.; Captain, B.; Alexeev, O. S.; Stafyla, E.; Hungria, A. B.; Midgley, P. A.; Thomas, J. M.; Adams, R. D.; Amiridis, M. D. Langmuir, 2006, 22, 5160-5167. (b) Deivaraj, T. C.; Chena, W.; Lee, J. Y. J. Mater. Chem., 2003, 13, 2555.
    [23]. Hideki A., Futoshi M., Laif R. A., Scott C. W., Héctor D. A., Francis J. D., J. AM. CHEM. SOC. 2008, 130, 5452–5458
    [24]. Carrete, L.; Andreas, Friedrich, K. A.; Stimming, U., Chem. Phys. Chem., 2000, 1, 162.
    [25]. Ledjeff-Hey, K.; Heinzel, A., J. Power Sources, 1996, 61, 125.
    [26]. Watanabe, M.; Furuuchi, Y.; Motoo, S., J. Electroanal. Chem., 1985, 191, 367.
    [27]. Watanabe, M.; Uchida, M.; Motoo, S., J. Electroanal. Chem., 1987, 229, 395.
    [28]. Chu, D.; Gilman, S., J. Electrochem. Soc., 1996, 143, 1685.
    [29]. Venkataraman, R.; Kunz, H. R.; Feton, J. M., J. Electrochem. Soc., 2003, 150, A278.
    [30]. Ley, K. L.; Liu, R.; Pu, C., J. Electrochem. Soc., 1997, 144, 1543.
    [31]. Hamnett, A. Catal. Today 1997, 38, 445.
    [32]. Liang, Yongmin.; Zhang, H.; Tian, Z.; Zhu, X.; Wang, X.; Yi, B. J. Phys. Chem. B, 2006, In ASAP.
    [33]. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Science, 1998, 280,1735.
    [34]. Arico, A. S.; Poltarzewski, Z.; Kim, H., J. Power Sources, 1995, 55, 159.
    [35]. Choi, W. C.; Kim, J. D.; Woo, S. I., Catal. Today, 2002, 74, 235.
    [36]. Shim, J.; Yoo, D. Y.; Lee, J. S., Electrochim. Acta., 2000, 45, 1943.
    [37]. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J., J. Phys. Chem., 1995, 99, 4577.
    [38]. Landsman, D. A.; Luczak, F. J.; U.S. Patent (1982).
    [39]. Elisabete, I. Santiago,; Laudemir, C. Varanda,; and H. Mercedes, Villullas,; J. Phys. Chem. C ,2007,111, 3146.
    [40]. Junliang, Zhang,; Miomir, B. Vukmirovic,; Kotaro, Sasaki,; Anand, Udaykumar, Nilekar,;Manos, Mavrikakis,; and Radoslav, R. Adzic,; J. AM. CHEM. SOC., 2005,127, 12480.
    [41]. V. S. Murthi,; R. C. Urian,; and S. Mukerjee,; J. Phys. Chem. B , 2004, 108, 11011.
    [42]. V. R. Stamenkovic,; B. S. Mun,; M. Arenz,; Karl, J. J. Mayhofer,;C. A. Lucas,; G. Wang,; P. N. Ross,; AND N. M. Markovic,; nature materials , 2007, 6, 241.
    [43]. V. R. Stamenkovic,; B. Fowler,; B. S. Mun,; G. Wang,;P. N. Ross,; C. A. Lucas,; N. M. Markovic,; SCIENCE , 2007, 493.
    [44]. V. Stamenkovic,; M. Arenz,; B.B. Blizanac,; K.J.J. Mayrhofer,;P.N. Ross,; N.M. Markovic,; Surface Science,2005, 576 , 145.
    [45]. V. Stamenkovic´,; T. J. Schmidt,; P. N. Ross,; and N. M. Markovic,; J. Phys. Chem. B ,2002, 106, 11970.
    [46]. Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006, 128, 8813.
    [47]. Takako T.; Hiroshi I.; Hiroyuki U.; Masahiro W.,J. Electrochem. Soc., 1999, 146, 3750-3756
    [48]. J. Zhang,1 K. Sasaki,1 E. Sutter,2 R. R. Adzic1, SCIENCE, 2007, 315, 220-222
    [49]. Zhongwei C.; Mahesh W.; Wenzhen Li; Yushan Y.;Angewandte Chemie International Edition, 2007, 46, 4060-4063
    [50]. Lei, Zhang,; Kunchan, Lee,; and Jiujun, Zhang,; Electrochimica Acta, 2007, 52 , 3088.
    [51]. Ratndeep S.; Prasanna M.; Nathan H.; Peter S., Angewandte Chemie International Edition, 2007, 46, 8988-8991
    [52]. Min-H. S.; Kotaro S.; Radoslav R. A., J. AM. CHEM. SOC. 2006, 128, 3526-3527
    [53]. Hernandez, J.; Solla-Gullon, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. J. Phys. Chem. C, 2007; 111, 14078-14083
    [54]. Susac, D.; Zhu, L.; Teo, M.; Sode, A.; Wong, K. C.; Wong, P. C.; Parsons, R. R.; Bizzotto, D.; Mitchell, K. A. R.; Campbell, S. A. J. Phys. Chem. C., 2007; 111, 18715-18723.
    [55]. Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 29, 395.
    [56]. Antolini E.; Cardellini, F. J. Alloys Compd. 2001, 315, 118.
    [57]. 彭文權, “以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒”,1997.
    [58]. Tran, T. D.; Langer, S. H., Anal. Chem., 1993, 65, 1805.
    [59]. Markovic´, N. M; Grgur, B. N; Lucas, C. A.; Ross, P. N., J. Phys. Chem. B, 1999, 103, 487.
    [60]. 胡啟章, “電化學原理與方法” , 五南圖書出版公司, 2002.
    [61]. Hwang, B.-J.; Sarma, L. S.; Chen, J.-M.; Chen, C.-H.; Shih, S.-C.; Wang, G.-R.; Liu, D.-G.; Lee, J.-F.; Tang, M.-T., J. Am. Chem. Soc., 2005, 127, 11140.

    無法下載圖示 本全文未授權公開
    QR CODE