簡易檢索 / 詳目顯示

研究生: 陳誌濠
Chen Chih-Hao
論文名稱: 利用單槽法於Si(100)表面製備十八烯分子自組裝薄膜之研究
Photo-induced Fabrication of Octadecyl SAMs on flat Oxide-free Si(100) in One-cell Process
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 無氧矽晶圓自組裝單層薄膜鈍化層1-十八烯氟化銨
英文關鍵詞: oxide-free silicon, self-assembled monolayer, passivation, octadecene, ammonium fluoride
論文種類: 學術論文
相關次數: 點閱:199下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單槽法製程在Si(100)表面上製備自組裝薄膜,單槽法製程結合蝕刻和自組裝薄膜生長兩步驟於同一容器中,藉由兩相溶液不互溶的特性分層,Si(100)樣品在下層NH4F的水溶液進行蝕刻除去表面的氧化層,在直接進入上層十八烯的甲苯溶液,照射白光進行自組裝薄膜生長,可以避免蝕刻後的 Si(100)表面與空氣接觸而氧化。利用不同的分析技術,如X-ray光電子能譜、原子力顯微鏡、全反射
    式紅外線光譜以及接觸角量測,鑑定Si(100)表面薄膜自組裝性質。
    根據結果顯示自組裝分子藉由單槽法製程成功的生長在Si(100)表面,而最後將生長ODC分子的Si(100)放置於空氣中測試抗氧化力,結果顯示蝕刻後的粗糙度和照光反應的時間對薄膜的抗氧化能力有直接的影響,單槽法比兩槽法所生成的薄膜,具有更好的抗氧化的能力。

    Self-assembled monolayers (SAMs) fabricate on oxide-free Si (100) in the one-cell process which combines the etching of native oxide and the fabrication of SAMs in one cell. The one-cell process use immiscible property of solutions to form two layer system – an aqueous solution of etchant and a toluene solution of precursors. First, native oxide of Si(100) was removed from surface in the down-layer of etching solution. Subsequently, the etched Si(100) was moved directly to the upper layer of the precursor solution for irradiation of white light. Without contact with air, the one-cell process effectively prevents from the oxidation of the as-etched Si surface. In this work, we employed NH4F as an etchant to produce oxide-free Si (100). The morphology of NH4F-treated of Si (100) was smoother than that that of NH4F-treated Si (111). Octadecene (ODC) was utilized to fabricate the SAMs on the oxide-free Si (100). The resulting ODC SAMs were characterized with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), attenuated total reflectance infrared spectroscopy (ATR-IR) and water contact angle system.
    According to the results, the ODC SAMs were fabricated on a oxide-free Si(100) with the one-cell process. The resistance to atmospheric oxidation of ODC SAMs is associated with the morphology of oxide-free Si (100) and the irradiation time. The ODC SAMs fabricated with the one-cell process exhibited a better resistance to oxidation under the ambient atmosphere than the ones obtained with the two-cell process.

    總目錄 I 圖目錄 IV 表目錄 IX 謝誌 X 摘要 XII Abstract XIII 第一章 緒論 1 1-1前言 1 1-2自組裝薄膜 2 1-3介電層原理 15 1-4實驗目的 18 第二章 儀器原理與製程理論 20 2-1儀器原理 20 2-1.1 X-ray光電子能譜儀(XPS) 20 2-1.2 原子力顯微鏡(AFM) 25 2-1.3接觸角測量 30 2-1.4全反射式紅外線吸收光譜 (ATR-IR) 30 2-2 NH4F蝕刻生成H-Si(100) 34 2-2.1 Si(100)自身氧化層的蝕刻 34 2-2.2 H-Si的振動吸收光譜 35 2-2.3蝕刻的機制 37 2-3自組裝薄膜的生長方法 40 2-3.1矽烷化反應生成 40 2-3.2格林納試劑反應 42 2-3.3電化學生長薄膜 44 2-3.4光化學反應生長 46 第三章 實驗製程與儀器量測 49 3-1實驗藥品 49 3-2實驗裝置(ONE-POT CELL) 50 3-2.1 One-Cell 裝置 50 3-2.2高壓汞燈參數 52 3-3實驗流程 52 3-4儀器測量條件 58 第四章 實驗結果與數據討論 60 4-1 H-Si(100)的製備 60 4-1.1 Si(100) wafer 表面清潔 60 4-1.2 Si(100)自身氧化層氟化胺緩衝溶液蝕刻 61 4-1.3 H-Si(100)的表面形貌變化 62 4-2 1-十八稀自組裝薄膜一鍋法生長 67 4-2.1 XPS量測Si(100)上之元素組成 67 4-2.2 AFM量測Si(100)上之表面形貌 71 4-2.3 接觸角量測薄膜緻密性 72 4-3 1-十八稀自組裝薄膜兩步法生長 76 4-3.1 XPS量測Si(100)上之元素組成 76 4-3.2接觸角量測薄膜緻密性 79 4-4 ATR-IR的官能基鑑定 81 4-5薄膜抗氧化性測量 83 4-5.1一步法自組裝薄膜抗氧化性測試 83 4-5.2薄膜分子彎曲對抗氧化能力的影響 85 第五章 結論 87 第六章參考文獻 89 圖目錄 圖1-1自組裝分子的結構 1 圖1-2 自組裝薄膜生成過程 2 圖1-3金屬氧化物與有機酸類形成自組裝薄膜 3 圖1-4 磷酸化自組裝薄膜利用末端官能基延伸應用 4 圖1-5矽烷單層膜的結構圖 5 圖1-6表面疏水性及超疏水性材料 5 圖1-7自組裝薄膜的覆蓋率 6 圖1-8自組裝薄膜電晶體 7 圖1-9 oxide-free Si的製備反應 8 圖1-10自組裝薄膜延長載子生命期 9 圖1-11 薄膜品質對 J-V圖的影響 10 圖1-12自組裝薄膜的Schottky性質 11 圖1-13自組裝薄膜品質在Schottky性質的差別 11 圖1-14分子整流器的結構圖 12 圖1-15分子共振穿隧二極體的運作圖 13 圖1-16分子記憶體的運作圖 13 圖1-17末端官能基應用於生物感測器 14 圖1-18 Oxide-free Silicon的優點 15 圖1-19 (a)場效電晶體的製作類型(b)穿隧電流的種類 17 圖1-20電極穿隧電流及閘極穿隧電流 18 圖2-1光電子的激發過程 20 圖2-2 XPS圖譜與原子能階 21 圖2-3 X-ray光源構造簡圖 22 圖2-4光電子分析儀(a)圓柱形分析儀(b)半球形分析儀 23 圖2-5電子訊號強度與深度關係圖 24 圖2-6 take-off 角度與電子訊號關係圖 25 圖2-7(a)探針與樣品間的作用力對距離曲線 (b)兩Ar原子間的Lennard–Jones位能曲線 26 圖2-8 AFM的偵測方式 26 圖2-9 AFM探針懸臂影響因素 27 圖2-10 AFM 掃描器運作圖 29 圖2-11 AFM的測量模式(a)非接觸式、(b)敲擊式和(c)接觸式 30 圖2-12接觸角對親疏水性的變化 30 圖2-13光線反射及折射現象圖 31 圖2-14一次反射式ATR示意圖 32 圖2-15 ATR-IR 的儀器光路圖 33 圖2-16 Si(100)於高pH值蝕刻可形成平坦形貌 35 圖2-17 Silicon 於NH4F下蝕刻的表面IR光譜 37 圖2-18自身氧化層的蝕刻機制 38 圖2-19在鹼性溶液下,蝕刻過程的反應機構 38 圖2-20炔類分子熱生成薄膜的反應機構 41 圖2-21理論計算炔類分子生長反應機構 42 圖2-22 Oxide-free Si(111)表面官能基修飾 42 圖2-23格林納試劑熱誘發矽烷化反應機構 43 圖2-24熱誘導格林納試劑反應與位能關係圖 43 圖2-25格林納試劑電生長薄膜反應機構 44 圖2-26偶氮分子電生長反應機構 45 圖2-27炔類分子陰極還原電長反應機構 45 圖2-28炔類分子陽極氧化電生長反應機構 46 圖2-29 U V光誘導生成自組裝薄膜反應機構 47 圖2-30可見光誘導生成自組裝薄膜反應機構 47 圖3-1汞燈在DI-water濾鏡下的穿透度 52 圖3-2實驗流程圖 57 圖4-1晶片經Piranha solution 處理後的XPS圖譜 60 圖4-2 晶片經NH4F去除自身氧化層後的圖譜 62 圖4-3 晶片經不同蝕刻時間後的AFM圖 63 圖4-4 鹼性條件下蝕刻的機制 64 圖4-5 Si(111)及Si(100)蝕刻後表面形貌的差異 65 圖4-6 蝕刻過程表面形貌變化模擬圖 65 圖4-7 Si(100)長時間蝕刻造成自組裝薄膜喪失抗氧化性 66 圖4-8 Si 2p的鍵結模式示意圖 67 圖4-9 單槽法曝光時間對C/Si面積比作圖 69 圖4-10單槽法不同曝光時間生長薄膜的Si 2p與C 1s 訊號 69 圖4-11單槽法不同曝光時間生長薄膜的XPS全譜 70 圖4-12不同照光時間的薄膜AFM圖 (a.0 min b.60min c.90min d.120min) 72 圖4-13單槽法不同照光時間對接觸角的分佈圖 74 圖4-14使用長波長光原生長薄膜的接觸角53 74 圖4-15兩槽法曝光時間對C/Si面積比作圖 77 圖4-16兩槽法不同曝光時間生長薄膜的Si 2p與C 1s 訊號 77 圖4-17兩槽法不同曝光時間生長薄膜的XPS全譜 78 圖4-18兩槽法不同照光時間對接觸角的分佈圖 80 圖4-19單槽法薄膜高曝光時間的IR吸收光譜 81 圖4-20兩槽法薄膜高曝光時間的IR吸收光譜 82 圖4-21單槽法薄膜的抗氧化力 84 圖4-22 兩槽法薄膜抗氧化力 85 圖4-23單槽法薄膜高曝光時間的抗氧化力 86   表目錄 表2-1 X-ray光源的靶材性質 23 表2-2測量折射率為1.5時,Ge晶體的ATR參數 33 表2-3在不同pH值,H-Si的振動模式種類 36 表3-1實驗藥品 49 表4-1單槽法薄膜的C 1s和Si 2p訊號積分比 68 表4-2不同照光時間的薄膜粗糙度 71 表4-3單槽法不同照光時間的薄膜接觸角量測結果 73 表4-4兩槽法薄膜的C 1s和Si 2p訊號積分比 76 表4-5兩槽法不同照光時間的薄膜接觸角量測結果 79

    1.Gooding, J. J.; Mearns, F.; Yang, W.; Liu, J., Self-Assembled Monolayers into the 21st Century: Recent Advances and Applications. Electroanalysis 2003, 15 (2), 81-96.
    2.Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
    3.Tao, Y. T., Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society 1993, 115 (10), 4350-4358.
    4.Adden, N.; Gamble, L. J.; Castner, D. G.; Hoffmann, A.; Gross, G.; Menzel, H., Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces. Langmuir 2006, 22 (19), 8197-8204.
    5.Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z., Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry 2008, 18 (6), 621-633.
    6.Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1170.
    7.Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D., Self assembled monolayers on silicon for molecular electronics. Analytica Chimica Acta 2006, 568 (1–2), 84-108.
    8.Schön, J. H.; Meng, H.; Bao, Z., Self-Assembled Monolayer Transistors. Advanced Materials 2002, 14 (4), 323-326.
    9.Linford, M. R.; Chidsey, C. E. D., Alkyl Monolayers Covalently Bonded to Silicon Surfaces. J. Am. Chem. Soc. 1993, 115, 12631-12632.
    10.Ciampi, S.; Harper, J. B.; Gooding, J. J., Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. Chemical Society Reviews 2010, 39 (6), 2158-2183.
    11.Royea, W. J.; Juang, A.; Lewis, N. S., Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination. Applied Physics Letters 2000, 77 (13), 1988-1990.
    12.Nemanick, E. J.; Hurley, P. T.; Webb, L. J.; Knapp, D. W.; Michalak, D. J.; Brunschwig, B. S.; Lewis, N. S., Chemical and Electrical Passivation of Single-Crystal Silicon(100) Surfaces through a Two-Step Chlorination/Alkylation Process. The Journal of Physical Chemistry B 2006, 110 (30), 14770-14778.
    13.Seitz, O.; Böcking, T.; Salomon, A.; Gooding, J. J.; Cahen, D., Importance of Monolayer Quality for Interpreting Current Transport through Organic Molecules:  Alkyls on Oxide-Free Si. Langmuir 2006, 22 (16), 6915-6922.
    14.Liu, Y.-J.; Yu, H.-Z., Molecular Passivation of Mercury−Silicon (p-type) Diode Junctions:  Alkylation, Oxidation, and Alkylsilation. The Journal of Physical Chemistry B 2003, 107 (31), 7803-7811.
    15.Yaffe, O.; Scheres, L.; Puniredd, S. R.; Stein, N.; Biller, A.; Lavan, R. H.; Shpaisman, H.; Zuilhof, H.; Haick, H.; Cahen, D.; Vilan, A., Molecular Electronics at Metal/Semiconductor Junctions. Si Inversion by Sub-Nanometer Molecular Films. Nano Letters 2009, 9 (6), 2390-2394.
    16.Thieblemont, F.; Seitz, O.; Vilan, A.; Cohen, H.; Salomon, E.; Kahn, A.; Cahen, D., Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials 2008, 20 (20), 3931-3936.
    17.Böcking, T.; Salomon, A.; Cahen, D.; Gooding, J. J., Thiol-Terminated Monolayers on Oxide-Free Si:  Assembly of Semiconductor−Alkyl−S−Metal Junctions. Langmuir 2007, 23 (6), 3236-3241.
    18.Vilan, A.; Yaffe, O.; Biller, A.; Salomon, A.; Kahn, A.; Cahen, D., Molecules on Si: Electronics with Chemistry. Advanced Materials 2010, 22 (2), 140-159.
    19.Lavi, A.; Cohen, H.; Bendikov, T.; Vilan, A.; Cahen, D., Si-C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers. Physical Chemistry Chemical Physics 2011, 13 (4), 1293-1296.
    20.Collet, J.; Tharaud, O.; Chapoton, A.; Vuillaume, D., Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Applied Physics Letters 2000, 76 (14), 1941-1943.
    21.Yzambart, G.; Fabre, B.; Lorcy, D., Multiredox Tetrathiafulvalene-Modified Oxide-Free Hydrogen-Terminated Si(100) Surfaces. Langmuir 2012, 28 (7), 3453-3459.
    22.Fabre, B., Ferrocene-Terminated Monolayers Covalently Bound to Hydrogen-Terminated Silicon Surfaces. Toward the Development of Charge Storage and Communication Devices. Accounts of Chemical Research 2010, 43 (12), 1509-1518.
    23.Sieval, A. B.; Linke, R.; Zuilhof, H.; Sudhölter, E. J. R., High-Quality Alkyl Monolayers on Silicon Surfaces. Advanced Materials 2000, 12 (19), 1457-1460.
    24.Ortiz, R. P.; Facchetti, A.; Marks, T. J., High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chemical Reviews 2009, 110 (1), 205-239.
    25.Facchetti, A.; Yoon, M. H.; Marks, T. J., Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Advanced Materials 2005, 17 (14), 1705-1725.
    26.DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J., Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. 2009.
    27.Iwai, H.; Momose, H. S.; Saito, M.; Ono, M.; Katsumata, Y., The future of ultra-small-geometry MOSFETs beyond 0.1 micron. Microelectron. Eng. 1995, 28 (1-4), 147-154.
    28.Depas, M.; Nigam, T.; Heyns, M. M., Soft breakdown of ultra-thin gate oxide layers. Electron Devices, IEEE Transactions on 1996, 43 (9), 1499-1504.
    29.Henson, W. K.; Nian, Y.; Kubicek, S.; Vogel, E. M.; Wortman, J. J.; De Meyer, K.; Naem, A., Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime. Electron Devices, IEEE Transactions on 2000, 47 (7), 1393-1400.
    30.Maboudian, R.; Ashurst, W. R.; Carraro, C., Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sensors and Actuators A: Physical 2000, 82 (1–3), 219-223.
    31.Watts, J. F.; Wolstenholme, J., An Introduction to Surface Analysis by XPS and AES. John Wiley & Sons: 2003.
    32.Vickerman, J. C.; Gilmore, I. S., Surface Analysis –The Principal Techniques. Edition, n., Ed. John Wiley & Sons: 2009.
    33.Castleman, A. W.; Toennies, J. J. P.; Yamanouchi, K.; Zinth, W., Surface and Interface Analysis An Electrochemists Toolbox. Springer: 2009.
    34.Hug, H. J.; Bennewitz, R., Scanning Probe Microscopy. Springer: 2004.
    35.Friedbacher, G.; Bubert, H., Surface and Thin Film Analysis A Compendium of Principles, Instrumentation, and Applications. 2, Ed. Wiley-VCH Verlag & Co. KGaA: 2011.
    36.Bracco, G.; Holst, B., Surface Science Techniques. Springer: 2013.
    37.Müller, A. B.; Reinhardt, F.; Resch, U.; Richter, W.; Rose, K. C.; Rossow, U., Hydrogen-terminated Si(100) surfaces investigated by reflectance anisotropy spectroscopy. Thin Solid Films 1993, 233 (1–2), 19-23.
    38.Dumas, P.; Chabal, Y. J., Electron-energy-loss characterization of the H-terminated Si(111) and Si(100) surfaces obtained by etching in NH4F. Chemical Physics Letters 1991, 181 (6), 537-543.
    39.Burrows, V. A.; Chabal, Y. J.; Higashi, G. S.; Raghavachari, K.; Christman, S. B., Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology. Applied Physics Letters 1988, 53 (11), 998-1000.
    40.Nakamura, M.; Song, M.-B.; Ito, M., Etching processing of Si(111) and Si(100) surfaces in an ammonium fluoride solution investigated by in situ ATR-IR. Electrochimica Acta 1996, 41 (5), 681-686.
    41.Sakaue, H.; Taniguchi, Y.; Okamura, Y.; Shingubara, S.; Takahagi, T., Wet treatment for preparing atomically smooth Si(100) wafer surface. Applied Surface Science 2004, 234 (1–4), 439-444.
    42.Clark, I. T.; Aldinger, B. S.; Gupta, A.; Hines, M. A., J. Chem. Phys. 2008, 128, 144711.
    43.Hines, M. A.; Faggin, M. F.; Gupta, A.; Aldinger, B. S.; Bao, K., Self-Propagating Reaction Produces Near-Ideal Functionalization of Si(100) and Flat Surfaces. The Journal of Physical Chemistry C 2012, 116 (35), 18920-18929.
    44.Aldinger, B. S.; Hines, M. A., Si(100) Etching in Aqueous Fluoride Solutions: Parallel Etching Reactions Lead to pH-Dependent Nanohillock Formation or Atomically Flat Surfaces. The Journal of Physical Chemistry C 2012, 116 (40), 21499-21507.
    45.Dumas, P.; Chabal, Y. J.; Jakob, P., Morphology of hydrogen-terminated Si(111) and Si(100) surfaces upon etching in HF and buffered-HF solutions. Surface Science 1992, 269–270 (0), 867-878.
    46.Chabal, Y. J.; Raghavachari, K., Surface Infrared Study of Si(100)-(2×1)H. PHYSICAL REVIEW LETTERS 1984, 53 (3), 282-285.
    47.Bjorkman, C. H.; Fukuda, M.; Yamazaki, T.; Miyazaki, S.; Hirose, M., Atomic Scale Morphology of Hydrogen-Terminated Si(100) Surfaces Studied by Fourier-Transform Infrared Attenuated Total Reflection Spectroscopy and Scanning Probe Microscopies. Japanese Journal of Applied Physics 1984, 34, 722-726.
    48.Allongue, P.; Henry de Villeneuve, C.; Morin, S.; Boukherroub, R.; Wayner, D. D. M., The preparation of flat H–Si(111) surfaces in 40% NH4F revisited. Electrochimica Acta 2000, 45 (28), 4591-4598.
    49.Ubara, H.; Imura, T.; Hiraki, A., Formation of SiH bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment. Solid State Communications 1984, 50 (7), 673-675.
    50.Allongue, P.; Kieling, V.; Gerischer, H., Etching mechanism and atomic structure of HSi(111) surfaces prepared in NH4F. Electrochimica Acta 1995, 40 (10), 1353-1360.
    51.Ligenza, J. R., EFFECT OF CRYSTAL ORIENTATION ON OXIDATION RATES OF SILICON IN HIGH PRESSURE STEAM. The Journal of Physical Chemistry 1961, 65 (11), 2011-2014.
    52.Miura, T.-a.; Niwano, M.; Shoji, D.; Miyamoto, N., Kinetics of oxidation on hydrogen-terminated Si(100) and (111) surfaces stored in air. Journal of Applied Physics 1996, 79 (8), 4373-4380.
    53.Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M., Growth of native oxide on a silicon surface. Journal of Applied Physics 1990, 68 (3), 1272-1281.
    54.Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J. Am. Chem. Soc. 1995, 117, 3145-3155.
    55.Sieval, A. B.; Opitz, R.; Maas, H. P. A.; Schoeman, M. G.; Meijer, G.; Vergeldt, F. J.; Zuilhof, H.; Sudhölter, E. J. R., Monolayers of 1-Alkynes on the H-Terminated Si(100) Surface. Langmuir 2000, 16 (26), 10359-10368.
    56.M. Buriak, J., Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chemical Communications 1999, 0 (12), 1051-1060.
    57.Coletti, C.; Marrone, A.; Giorgi, G.; Sgamellotti, A.; Cerofolini, G.; Re, N., Nonradical Mechanisms for the Uncatalyzed Thermal Functionalization of Silicon Surfaces by Alkenes and Alkynes:  A Density Functional Study. Langmuir 2006, 22 (24), 9949-9956.
    58.Bansal, A.; Li, X.; Lauermann, I.; Lewis, N. S.; Yi, S. I.; Weinberg, W. H., Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route. Journal of the American Chemical Society 1996, 118 (30), 7225-7226.
    59.Vegunta, S. S. S.; Ngunjiri, J. N.; Flake, J. C., Electrochemical and Thermal Grafting of Alkyl Grignard Reagents onto (100) Silicon Surfaces. Langmuir 2009, 25 (21), 12750-12756.
    60.Fellah, S.; Boukherroub, R.; Ozanam, F.; Chazalviel, J.-N., Hidden Electrochemistry in the Thermal Grafting of Silicon Surfaces from Grignard Reagents. Langmuir 2004, 20 (15), 6359-6364.
    61.Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40 (7), 3995-4048.
    62.G. Robins, E.; P. Stewart, M.; M. Buriak, J., Anodic and cathodic electrografting of alkynes on porous silicon[dagger]. Chemical Communications 1999, 0 (24), 2479-2480.
    63.Boukherroub, R.; Morin, S.; Bensebaa, F.; Wayner, D. D. M. New Synthetic Routes to Alkyl Monolayers on the Si(111) Surface1. Langmuir 1999, 15 (11), 3831-3835.
    64.Cicero, R. L.; Linford, M. R.; Chidsey, C. E. D., Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111). Langmuir 2000, 16 (13), 5688-5695.
    65.Cicero, R. L.; Chidsey, C. E. D.; Lopinski, G. P.; Wayner, D. D. M.; Wolkow, R. A., Olefin Additions on H−Si(111):  Evidence for a Surface Chain Reaction Initiated at Isolated Dangling Bonds. Langmuir 2001, 18 (2), 305-307.
    66.Sun, Q.-Y.; de Smet, L. C. P. M.; van Lagen, B.; Giesbers, M.; Thüne, P. C.; van Engelenburg, J.; de Wolf, F. A.; Zuilhof, H.; Sudhölter, E. J. R., Covalently Attached Monolayers on Crystalline Hydrogen-Terminated Silicon:  Extremely Mild Attachment by Visible Light. Journal of the American Chemical Society 2005, 127 (8), 2514-2523.
    67.Lee, M. V.; Scipioni, R.; Boero, M.; Silvestrelli, P. L.; Ariga, K., The initiation mechanisms for surface hydrosilylation with 1-alkenes. Physical Chemistry Chemical Physics 2011, 13 (11), 4862-4867.
    68.Sano, H.; Maeda, H.; Matsuoka, S.; Lee, K.-H.; Murase, K.; Sugimura, H., Self-Assembled Monolayers Directly Attached to Silicon Substrates Formed from 1-Hexadecene by Thermal, Ultraviolet, and Visible Light Activation Methods. Japanese Journal of Applied Physics 2008, 47, 5659-5664.
    69.Huang, Y.-S.; Chen, C.-H.; Chen, C.-H.; Hung, W.-H., Fabrication of Octadecyl and Octadecanethiolate Self-Assembled Monolayers on Oxide-Free Si(111) with a One-Cell Process. ACS Applied Materials & Interfaces 2013.
    70.Nemanick, E. J.; Hurley, P. T.; Brunschwig, B. S.; Lewis, N. S., Chemical and Electrical Passivation of Silicon (111) Surfaces through Functionalization with Sterically Hindered Alkyl Groups. The Journal of Physical Chemistry B 2006, 110 (30), 14800-14808.

    下載圖示
    QR CODE