研究生: |
陳誌濠 Chen Chih-Hao |
---|---|
論文名稱: |
利用單槽法於Si(100)表面製備十八烯分子自組裝薄膜之研究 Photo-induced Fabrication of Octadecyl SAMs on flat Oxide-free Si(100) in One-cell Process |
指導教授: |
洪偉修
Hung, Wei-Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 無氧矽晶圓 、自組裝單層薄膜 、鈍化層 、1-十八烯 、氟化銨 |
英文關鍵詞: | oxide-free silicon, self-assembled monolayer, passivation, octadecene, ammonium fluoride |
論文種類: | 學術論文 |
相關次數: | 點閱:183 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單槽法製程在Si(100)表面上製備自組裝薄膜,單槽法製程結合蝕刻和自組裝薄膜生長兩步驟於同一容器中,藉由兩相溶液不互溶的特性分層,Si(100)樣品在下層NH4F的水溶液進行蝕刻除去表面的氧化層,在直接進入上層十八烯的甲苯溶液,照射白光進行自組裝薄膜生長,可以避免蝕刻後的 Si(100)表面與空氣接觸而氧化。利用不同的分析技術,如X-ray光電子能譜、原子力顯微鏡、全反射
式紅外線光譜以及接觸角量測,鑑定Si(100)表面薄膜自組裝性質。
根據結果顯示自組裝分子藉由單槽法製程成功的生長在Si(100)表面,而最後將生長ODC分子的Si(100)放置於空氣中測試抗氧化力,結果顯示蝕刻後的粗糙度和照光反應的時間對薄膜的抗氧化能力有直接的影響,單槽法比兩槽法所生成的薄膜,具有更好的抗氧化的能力。
Self-assembled monolayers (SAMs) fabricate on oxide-free Si (100) in the one-cell process which combines the etching of native oxide and the fabrication of SAMs in one cell. The one-cell process use immiscible property of solutions to form two layer system – an aqueous solution of etchant and a toluene solution of precursors. First, native oxide of Si(100) was removed from surface in the down-layer of etching solution. Subsequently, the etched Si(100) was moved directly to the upper layer of the precursor solution for irradiation of white light. Without contact with air, the one-cell process effectively prevents from the oxidation of the as-etched Si surface. In this work, we employed NH4F as an etchant to produce oxide-free Si (100). The morphology of NH4F-treated of Si (100) was smoother than that that of NH4F-treated Si (111). Octadecene (ODC) was utilized to fabricate the SAMs on the oxide-free Si (100). The resulting ODC SAMs were characterized with X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), attenuated total reflectance infrared spectroscopy (ATR-IR) and water contact angle system.
According to the results, the ODC SAMs were fabricated on a oxide-free Si(100) with the one-cell process. The resistance to atmospheric oxidation of ODC SAMs is associated with the morphology of oxide-free Si (100) and the irradiation time. The ODC SAMs fabricated with the one-cell process exhibited a better resistance to oxidation under the ambient atmosphere than the ones obtained with the two-cell process.
1.Gooding, J. J.; Mearns, F.; Yang, W.; Liu, J., Self-Assembled Monolayers into the 21st Century: Recent Advances and Applications. Electroanalysis 2003, 15 (2), 81-96.
2.Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
3.Tao, Y. T., Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society 1993, 115 (10), 4350-4358.
4.Adden, N.; Gamble, L. J.; Castner, D. G.; Hoffmann, A.; Gross, G.; Menzel, H., Phosphonic Acid Monolayers for Binding of Bioactive Molecules to Titanium Surfaces. Langmuir 2006, 22 (19), 8197-8204.
5.Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z., Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry 2008, 18 (6), 621-633.
6.Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chemical Reviews 2005, 105 (4), 1103-1170.
7.Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D., Self assembled monolayers on silicon for molecular electronics. Analytica Chimica Acta 2006, 568 (1–2), 84-108.
8.Schön, J. H.; Meng, H.; Bao, Z., Self-Assembled Monolayer Transistors. Advanced Materials 2002, 14 (4), 323-326.
9.Linford, M. R.; Chidsey, C. E. D., Alkyl Monolayers Covalently Bonded to Silicon Surfaces. J. Am. Chem. Soc. 1993, 115, 12631-12632.
10.Ciampi, S.; Harper, J. B.; Gooding, J. J., Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. Chemical Society Reviews 2010, 39 (6), 2158-2183.
11.Royea, W. J.; Juang, A.; Lewis, N. S., Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination. Applied Physics Letters 2000, 77 (13), 1988-1990.
12.Nemanick, E. J.; Hurley, P. T.; Webb, L. J.; Knapp, D. W.; Michalak, D. J.; Brunschwig, B. S.; Lewis, N. S., Chemical and Electrical Passivation of Single-Crystal Silicon(100) Surfaces through a Two-Step Chlorination/Alkylation Process. The Journal of Physical Chemistry B 2006, 110 (30), 14770-14778.
13.Seitz, O.; Böcking, T.; Salomon, A.; Gooding, J. J.; Cahen, D., Importance of Monolayer Quality for Interpreting Current Transport through Organic Molecules: Alkyls on Oxide-Free Si. Langmuir 2006, 22 (16), 6915-6922.
14.Liu, Y.-J.; Yu, H.-Z., Molecular Passivation of Mercury−Silicon (p-type) Diode Junctions: Alkylation, Oxidation, and Alkylsilation. The Journal of Physical Chemistry B 2003, 107 (31), 7803-7811.
15.Yaffe, O.; Scheres, L.; Puniredd, S. R.; Stein, N.; Biller, A.; Lavan, R. H.; Shpaisman, H.; Zuilhof, H.; Haick, H.; Cahen, D.; Vilan, A., Molecular Electronics at Metal/Semiconductor Junctions. Si Inversion by Sub-Nanometer Molecular Films. Nano Letters 2009, 9 (6), 2390-2394.
16.Thieblemont, F.; Seitz, O.; Vilan, A.; Cohen, H.; Salomon, E.; Kahn, A.; Cahen, D., Electronic Current Transport through Molecular Monolayers: Comparison between Hg/Alkoxy and Alkyl Monolayer/Si(100) Junctions. Advanced Materials 2008, 20 (20), 3931-3936.
17.Böcking, T.; Salomon, A.; Cahen, D.; Gooding, J. J., Thiol-Terminated Monolayers on Oxide-Free Si: Assembly of Semiconductor−Alkyl−S−Metal Junctions. Langmuir 2007, 23 (6), 3236-3241.
18.Vilan, A.; Yaffe, O.; Biller, A.; Salomon, A.; Kahn, A.; Cahen, D., Molecules on Si: Electronics with Chemistry. Advanced Materials 2010, 22 (2), 140-159.
19.Lavi, A.; Cohen, H.; Bendikov, T.; Vilan, A.; Cahen, D., Si-C-bound alkyl chains on oxide-free Si: towards versatile solution preparation of electronic transport quality monolayers. Physical Chemistry Chemical Physics 2011, 13 (4), 1293-1296.
20.Collet, J.; Tharaud, O.; Chapoton, A.; Vuillaume, D., Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Applied Physics Letters 2000, 76 (14), 1941-1943.
21.Yzambart, G.; Fabre, B.; Lorcy, D., Multiredox Tetrathiafulvalene-Modified Oxide-Free Hydrogen-Terminated Si(100) Surfaces. Langmuir 2012, 28 (7), 3453-3459.
22.Fabre, B., Ferrocene-Terminated Monolayers Covalently Bound to Hydrogen-Terminated Silicon Surfaces. Toward the Development of Charge Storage and Communication Devices. Accounts of Chemical Research 2010, 43 (12), 1509-1518.
23.Sieval, A. B.; Linke, R.; Zuilhof, H.; Sudhölter, E. J. R., High-Quality Alkyl Monolayers on Silicon Surfaces. Advanced Materials 2000, 12 (19), 1457-1460.
24.Ortiz, R. P.; Facchetti, A.; Marks, T. J., High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chemical Reviews 2009, 110 (1), 205-239.
25.Facchetti, A.; Yoon, M. H.; Marks, T. J., Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Advanced Materials 2005, 17 (14), 1705-1725.
26.DiBenedetto, S. A.; Facchetti, A.; Ratner, M. A.; Marks, T. J., Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications. 2009.
27.Iwai, H.; Momose, H. S.; Saito, M.; Ono, M.; Katsumata, Y., The future of ultra-small-geometry MOSFETs beyond 0.1 micron. Microelectron. Eng. 1995, 28 (1-4), 147-154.
28.Depas, M.; Nigam, T.; Heyns, M. M., Soft breakdown of ultra-thin gate oxide layers. Electron Devices, IEEE Transactions on 1996, 43 (9), 1499-1504.
29.Henson, W. K.; Nian, Y.; Kubicek, S.; Vogel, E. M.; Wortman, J. J.; De Meyer, K.; Naem, A., Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime. Electron Devices, IEEE Transactions on 2000, 47 (7), 1393-1400.
30.Maboudian, R.; Ashurst, W. R.; Carraro, C., Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sensors and Actuators A: Physical 2000, 82 (1–3), 219-223.
31.Watts, J. F.; Wolstenholme, J., An Introduction to Surface Analysis by XPS and AES. John Wiley & Sons: 2003.
32.Vickerman, J. C.; Gilmore, I. S., Surface Analysis –The Principal Techniques. Edition, n., Ed. John Wiley & Sons: 2009.
33.Castleman, A. W.; Toennies, J. J. P.; Yamanouchi, K.; Zinth, W., Surface and Interface Analysis An Electrochemists Toolbox. Springer: 2009.
34.Hug, H. J.; Bennewitz, R., Scanning Probe Microscopy. Springer: 2004.
35.Friedbacher, G.; Bubert, H., Surface and Thin Film Analysis A Compendium of Principles, Instrumentation, and Applications. 2, Ed. Wiley-VCH Verlag & Co. KGaA: 2011.
36.Bracco, G.; Holst, B., Surface Science Techniques. Springer: 2013.
37.Müller, A. B.; Reinhardt, F.; Resch, U.; Richter, W.; Rose, K. C.; Rossow, U., Hydrogen-terminated Si(100) surfaces investigated by reflectance anisotropy spectroscopy. Thin Solid Films 1993, 233 (1–2), 19-23.
38.Dumas, P.; Chabal, Y. J., Electron-energy-loss characterization of the H-terminated Si(111) and Si(100) surfaces obtained by etching in NH4F. Chemical Physics Letters 1991, 181 (6), 537-543.
39.Burrows, V. A.; Chabal, Y. J.; Higashi, G. S.; Raghavachari, K.; Christman, S. B., Infrared spectroscopy of Si(111) surfaces after HF treatment: Hydrogen termination and surface morphology. Applied Physics Letters 1988, 53 (11), 998-1000.
40.Nakamura, M.; Song, M.-B.; Ito, M., Etching processing of Si(111) and Si(100) surfaces in an ammonium fluoride solution investigated by in situ ATR-IR. Electrochimica Acta 1996, 41 (5), 681-686.
41.Sakaue, H.; Taniguchi, Y.; Okamura, Y.; Shingubara, S.; Takahagi, T., Wet treatment for preparing atomically smooth Si(100) wafer surface. Applied Surface Science 2004, 234 (1–4), 439-444.
42.Clark, I. T.; Aldinger, B. S.; Gupta, A.; Hines, M. A., J. Chem. Phys. 2008, 128, 144711.
43.Hines, M. A.; Faggin, M. F.; Gupta, A.; Aldinger, B. S.; Bao, K., Self-Propagating Reaction Produces Near-Ideal Functionalization of Si(100) and Flat Surfaces. The Journal of Physical Chemistry C 2012, 116 (35), 18920-18929.
44.Aldinger, B. S.; Hines, M. A., Si(100) Etching in Aqueous Fluoride Solutions: Parallel Etching Reactions Lead to pH-Dependent Nanohillock Formation or Atomically Flat Surfaces. The Journal of Physical Chemistry C 2012, 116 (40), 21499-21507.
45.Dumas, P.; Chabal, Y. J.; Jakob, P., Morphology of hydrogen-terminated Si(111) and Si(100) surfaces upon etching in HF and buffered-HF solutions. Surface Science 1992, 269–270 (0), 867-878.
46.Chabal, Y. J.; Raghavachari, K., Surface Infrared Study of Si(100)-(2×1)H. PHYSICAL REVIEW LETTERS 1984, 53 (3), 282-285.
47.Bjorkman, C. H.; Fukuda, M.; Yamazaki, T.; Miyazaki, S.; Hirose, M., Atomic Scale Morphology of Hydrogen-Terminated Si(100) Surfaces Studied by Fourier-Transform Infrared Attenuated Total Reflection Spectroscopy and Scanning Probe Microscopies. Japanese Journal of Applied Physics 1984, 34, 722-726.
48.Allongue, P.; Henry de Villeneuve, C.; Morin, S.; Boukherroub, R.; Wayner, D. D. M., The preparation of flat H–Si(111) surfaces in 40% NH4F revisited. Electrochimica Acta 2000, 45 (28), 4591-4598.
49.Ubara, H.; Imura, T.; Hiraki, A., Formation of SiH bonds on the surface of microcrystalline silicon covered with SiOx by HF treatment. Solid State Communications 1984, 50 (7), 673-675.
50.Allongue, P.; Kieling, V.; Gerischer, H., Etching mechanism and atomic structure of HSi(111) surfaces prepared in NH4F. Electrochimica Acta 1995, 40 (10), 1353-1360.
51.Ligenza, J. R., EFFECT OF CRYSTAL ORIENTATION ON OXIDATION RATES OF SILICON IN HIGH PRESSURE STEAM. The Journal of Physical Chemistry 1961, 65 (11), 2011-2014.
52.Miura, T.-a.; Niwano, M.; Shoji, D.; Miyamoto, N., Kinetics of oxidation on hydrogen-terminated Si(100) and (111) surfaces stored in air. Journal of Applied Physics 1996, 79 (8), 4373-4380.
53.Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M., Growth of native oxide on a silicon surface. Journal of Applied Physics 1990, 68 (3), 1272-1281.
54.Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D., Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. J. Am. Chem. Soc. 1995, 117, 3145-3155.
55.Sieval, A. B.; Opitz, R.; Maas, H. P. A.; Schoeman, M. G.; Meijer, G.; Vergeldt, F. J.; Zuilhof, H.; Sudhölter, E. J. R., Monolayers of 1-Alkynes on the H-Terminated Si(100) Surface. Langmuir 2000, 16 (26), 10359-10368.
56.M. Buriak, J., Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chemical Communications 1999, 0 (12), 1051-1060.
57.Coletti, C.; Marrone, A.; Giorgi, G.; Sgamellotti, A.; Cerofolini, G.; Re, N., Nonradical Mechanisms for the Uncatalyzed Thermal Functionalization of Silicon Surfaces by Alkenes and Alkynes: A Density Functional Study. Langmuir 2006, 22 (24), 9949-9956.
58.Bansal, A.; Li, X.; Lauermann, I.; Lewis, N. S.; Yi, S. I.; Weinberg, W. H., Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route. Journal of the American Chemical Society 1996, 118 (30), 7225-7226.
59.Vegunta, S. S. S.; Ngunjiri, J. N.; Flake, J. C., Electrochemical and Thermal Grafting of Alkyl Grignard Reagents onto (100) Silicon Surfaces. Langmuir 2009, 25 (21), 12750-12756.
60.Fellah, S.; Boukherroub, R.; Ozanam, F.; Chazalviel, J.-N., Hidden Electrochemistry in the Thermal Grafting of Silicon Surfaces from Grignard Reagents. Langmuir 2004, 20 (15), 6359-6364.
61.Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40 (7), 3995-4048.
62.G. Robins, E.; P. Stewart, M.; M. Buriak, J., Anodic and cathodic electrografting of alkynes on porous silicon[dagger]. Chemical Communications 1999, 0 (24), 2479-2480.
63.Boukherroub, R.; Morin, S.; Bensebaa, F.; Wayner, D. D. M. New Synthetic Routes to Alkyl Monolayers on the Si(111) Surface1. Langmuir 1999, 15 (11), 3831-3835.
64.Cicero, R. L.; Linford, M. R.; Chidsey, C. E. D., Photoreactivity of Unsaturated Compounds with Hydrogen-Terminated Silicon(111). Langmuir 2000, 16 (13), 5688-5695.
65.Cicero, R. L.; Chidsey, C. E. D.; Lopinski, G. P.; Wayner, D. D. M.; Wolkow, R. A., Olefin Additions on H−Si(111): Evidence for a Surface Chain Reaction Initiated at Isolated Dangling Bonds. Langmuir 2001, 18 (2), 305-307.
66.Sun, Q.-Y.; de Smet, L. C. P. M.; van Lagen, B.; Giesbers, M.; Thüne, P. C.; van Engelenburg, J.; de Wolf, F. A.; Zuilhof, H.; Sudhölter, E. J. R., Covalently Attached Monolayers on Crystalline Hydrogen-Terminated Silicon: Extremely Mild Attachment by Visible Light. Journal of the American Chemical Society 2005, 127 (8), 2514-2523.
67.Lee, M. V.; Scipioni, R.; Boero, M.; Silvestrelli, P. L.; Ariga, K., The initiation mechanisms for surface hydrosilylation with 1-alkenes. Physical Chemistry Chemical Physics 2011, 13 (11), 4862-4867.
68.Sano, H.; Maeda, H.; Matsuoka, S.; Lee, K.-H.; Murase, K.; Sugimura, H., Self-Assembled Monolayers Directly Attached to Silicon Substrates Formed from 1-Hexadecene by Thermal, Ultraviolet, and Visible Light Activation Methods. Japanese Journal of Applied Physics 2008, 47, 5659-5664.
69.Huang, Y.-S.; Chen, C.-H.; Chen, C.-H.; Hung, W.-H., Fabrication of Octadecyl and Octadecanethiolate Self-Assembled Monolayers on Oxide-Free Si(111) with a One-Cell Process. ACS Applied Materials & Interfaces 2013.
70.Nemanick, E. J.; Hurley, P. T.; Brunschwig, B. S.; Lewis, N. S., Chemical and Electrical Passivation of Silicon (111) Surfaces through Functionalization with Sterically Hindered Alkyl Groups. The Journal of Physical Chemistry B 2006, 110 (30), 14800-14808.