簡易檢索 / 詳目顯示

研究生: 旁柯吉
Pankaj Vijayrao Khairnar
論文名稱: 第一部分. 分子內威悌反應策略進行多種雜環之多樣性導向合成及吡唑啉酮/噻唑酮衍生物之β-醯化反應 第二部份. 透過3-高醯基香豆素及不飽和吡唑啉酮經有機催化 (3+2) 環化反應進行螺環吡唑啉酮之不對稱合成
PART-I Intramolecular Wittig Strategy as a Powerful Tool for the Diversity-Oriented Synthesis of Heterocycles and Direct β-Acylation of Pyrazolone/Thiazolone Alkylidene Derivatives Catalyzed by Organophosphanes PART-II Enantioselective Synthesis of Spiro-pyrazolones via Organocatalytic (3+2) Cycloaddition Reaction between 3-Homoacylcoumarin and Unsaturated Pyrazolone Derivatives
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 583
中文關鍵詞: 威悌反應化學選擇性多樣性導向1,3-偶極體1,6-加成δ位-碳醯化鏡像選擇性β-醯化反應1,4-加成有機膦吡唑啉酮衍生物噻唑酮衍生物(3+2)環化加成反應3-高醯基香豆素螺環戊烷
英文關鍵詞: Wittig reaction., Chemoselective, Diversity-Oriented, Direct β-acylation, Functionalized Pyrazolones and Thiazolones, Spirocyclopentane
DOI URL: http://doi.org/10.6345/NTNU202000636
論文種類: 學術論文
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ACKNOWLEDGEMENT I ABSTRACT II ABBREVIATIONs LIST VI TABLE OF CONTENTS Part-I CHAPTER-1: “An Intramolecular Wittig Approach toward Heteroarenes: Synthesis of Pyrazoles, Isoxazoles, and Chromenone-Oximes” I-1-A. Introduction 2 I-1-B. Reviews and literatures I-1-B.1. Selected synthetic methods of pyrazole derivatives 4 I-1-B.2. Selected synthetic methods of isoxazole derivatives 5 I-1-B.3. Synthetic methods of chromane and chrominone oxime derivatives 8 I-1-B.4. Medicinal chemistry uses 10 I-1-C. Research motivation 11 I-1-D. Results and Discussion I-1-D.1. Reaction conditions optimization of pyrazole 63aa 17 I-1-D.2. Substrate scope of trisubstituted pyrazoles 63 19 I-1-D.3. Reaction optimization for isoxazole 67aa 22 I-1-D.4. Substrate scope of disubstituted isoxazoles 67 26 I-1-D.5. Reaction optimization for chrominone oxime 81aa and isoxazole 82aa 34 I-1-D.6. Synthesis of isoxazoles 82 and chromenone-oximes 81 36 I-1-D.7. Chemoselective synthesis of chromenone-oximes 81 38 I-1-D.8. Plausible mechanism 39 I-1-E. Conclusions 40 I-1-F. Experimental Section I-1-F.1. General aspects and materials 41 I-1-F.2. Experimental procedures 42 I-1-G. Analytical data for all new compounds 49 I-1-H. X-ray crystallographic data of selected compounds 90 I-1-I. 1H, 19F, 31P and 13C NMR spectra for all new compounds 108 I-1-J. Scanned copies of EI Mass Spectra for compounds 81 and 82 197 I-1-K. References 207 CHAPTER-2: “Diversity-Oriented Synthesis of Spiropentadiene Pyrazolones and 1H-Oxepino[2,3-c]pyrazoles from Doubly Conjugated Pyrazolones via Intramolecular Wittig Reaction” I-2-A. Introduction 211 I-2-B. Reviews and literatures 212 I-2-C. Research motivation 220 I-2-D. Results and Discussion 221 I-2-D.1. Reaction conditions optimization of spiropentadiene pyrazolones 50aa 227 I-2-D.2. Substrate scope of spiropentadiene pyrazolones 50 228 I-2-D.3. Reaction optimization of oxepino[2,3-c]pyrazoles 51ah 231 I-2-D.4. Substrate scope of 1H-oxepino[2,3-c]pyrazoles 51 232 I-2-D.4. Gram scale synthesis of 50ae and 51ah 234 I-2-D.5. Control experiments to prove the mechanism 235 I-2-D.6. Plausible reaction mechanism 239 I-2-D.7. Application of our protocol 240 I-2-E. Conclusions 243 I-2-F. Experimental Section I-2-F.1. General aspects and materials 245 I-2-F.2. Experimental procedures 246 I-2-G. Analytical data for all new compounds 248 I-2-H. X-ray crystallographic data of selected compounds 280 I-2-I. 1H 19F, 31P and 13C NMR spectra for all new compounds 292 I-2-J. References 352 CHAPTER 3: “Organophosphane-Catalyzed Direct β-Acylation of 4-Arylidene-Pyrazolones and 5-Arylidene-Thiazolones with Acyl Chlorides” I-3-A. Introduction 355 I-3-B. Reviews and literatures I-3-B.1. Selected synthetic methods for the C-C bond formation 358 I-3-C. Research motivation 363 I-3-D. Results and Discussion 365 I-3-D.1. Reaction optimization of β-acylated pyrazolones 17aa 365 I-3-D.2. Substrate scope of β-acylated pyrazolones 17 367 I-3-D.3. Substrate scope of β-acylated pyrazolones 17 respect to acyl chlorides 370 I-3-D.4. Reaction optimization of β-acylated thiazolone 30aa 374 I-3-D.5. Substrate scope of β-acylated thiazolone 30 376 I-3-D.6. Substrate scope of β-acylated thiazolone 30 respect to acyl chlorides 377 I-3-D.7. Plausible reaction mechanism 378 I-3-D.8. Application of our protocol 379 I-3-E. Conclusions 381 I-3-F. Experimental Section I-3-F.1. General aspects and materials 382 I-3-F.2. Experimental procedures 383 I-3-G. Analytical data for all new compounds 386 I-3-H. X-ray crystallographic data of selected compounds 415 I-3-I. 1H 19F, 31P and 13C NMR spectra for all new compounds 437 I-3-J. References 505 Part II CHAPTER 4: “Asymmetric Synthesis of Spiro-pyrazolones via Organocatalytic (3+2) Cycloaddition Reaction between 3-Homoacylcoumarin and Unsaturated Pyrazolone Derivatives” II-4-A. Introduction 508 II-4-B. Reviews and literatures II-4-B.1. Types of 1,3-dipole precursors 510 II-4-B.2. Reported methods for the generation of 1,3-dipole precursors 511 II-4-B.3. Importance of pyrazolones and coumarin derivatives and their synthetic applications 512 II-4-C. Research motivation 514 II-4-D. Results and Discussion II-4-D.1. Chiral catalyst screening 516 II-4-D.2. Solvent screening 518 II-4-D.3. Additives screening 519 II-4-D.4. Substrate scope of spiro-pyrazolones 29 with respect to coumarin 23 521 II-4-D.5. Substrate scope of spiro-pyrazolones 29 with respect to pyrazolone 28 522 II-4-D.6. Gram-scale reaction for the synthesis of spiro-pyrazolones 29 523 II-4-D.7. Absolute stereochemistry using X-ray 523 II-4-D.8. Proposed reaction mechanism and transition state 524 II-4-E. Conclusions 525 II-4-F. Experimental Section II-4-F.1. General aspects and materials 526 II-4-F.2. Experimental procedures 527 II-4-G. Analytical data for all new compounds 529 II-4-H. X-ray crystallographic data of selected compounds 542 II-4-I. HPLC data of all compounds 546 II-4-J. 1H 19F, 31P and 13C NMR spectra for all new compounds 564 II-4-K. References 582

    I-1.K. References (Chapter-1):
    (1) Kalaria, P. N.; Karad, S. C.; Raval, D. K. Eur. J. Med. Chem. 2018, 158, 917-936.
    (2) Hossain, M. Sci. J. Chem. 2018, 6-9.
    (3) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257-74.
    (5) Knorr, L. Berichte der deutschen chemischen Gesellschaft 1883, 16, 2597-2599.
    (6) He, S.; Chen, L.; Niu, Y.-N.; Wu, L.-Y.; Liang, Y.-M. Tet. Lett. 2009, 50, 2443-2445.
    (7) Kovács, S.; Novák, Z. Tetrahedron. 2013, 69, 8987-8993.
    (8) Hu, F.; Szostak, M. Adv. Syn. Cat. 2015, 357, 2583-2614.
    (9) (a) Quilico, A. Chem. Het. Comp. 1962, 1-4.
    (10) Teresa, M. V. D. P. e. M. Curr. Org. Chem. 2005, 9, 925-958.
    (11) Sheldrake, P. W. Annual Reports Section "B" (Organic Chemistry) 1994, 91, 207-250.
    (12) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210-216.
    (13) Wang, L.; Yu, X.; Feng, X.; Bao, M. Org. Lett. 2012, 14, 2418-2421.
    (14) Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Org. Lett. 2009, 11, 3982-3985.
    (15) Nakamura, N.; Tajima, Y.; Sakai, K. Heterocycles. 1982, 17, 235-245.
    (16) Pratap, R.; Ram, V. J. Chem. Rev. 2014, 114, 10476-10526.
    (17) Bai, W. J.; David, J. G.; Feng, Z. G.; Weaver, M. G.; Wu, K. L.; Pettus, T. R. Acc. Chem. Res. 2014, 47, 3655-64.
    (18) Orr, R.; Campeau, L.-C.; Chobanian, H.; McCabe Dunn, J.; Pio, B.; Plummer, C.; Nolting, A.; Ruck, R. Synthesis. 2016, 49, 657-666.
    (19) Schweizer, E. E.; Light, K. K. J. Org. Chem. 1966, 31, 2912-2915.
    (20) Jeong, H. J.; Kim, D. Y. Org. Lett. 2018, 20, 2944-2947.
    (21) Johnson, J. R. Org. Reactions. 2011, 210-265.
    (22) Charvin, D.; Pomel, V.; Ortiz, M.; Frauli, M.; Scheffler, S.; Steinberg, E.; Baron, L.; Deshons, L.; Rudigier, R.; Thiarc, D.; Morice, C.; Manteau, B.; Mayer, S.; Graham, D.; Giethlen, B.; Brugger, N.; Hedou, G.; Conquet, F.; Schann, S. J. Med. Chem. 2017, 60, 8515-8537.
    (23) (a) Kucukguzel, S. G.; Senkardes, S. Eur. J. Med. Chem. 2015, 97, 786-815. (b) Khan, M. F.; Alam, M. M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. Eu.r J. Med. Chem. 2016, 120, 170-201. (c) Zhang, H. Z.; Zhao, Z. L.; Zhou, C. H. Eur. J. Med. Chem. 2018, 144, 444-492.
    (24) Lin, W.; Karanam, P.; Reddy, G. Synlett. 2018, 29, 2608-2622.
    (25) Kao, T.-T.; Syu, S.-e.; Jhang, Y.-W.; Lin, W. Org. Let.t 2010, 12, 3066-3069.
    (26) Fan, Y. S.; Das, U.; Hsiao, M. Y.; Liu, M. H.; Lin, W. J. Org. Chem. 2014, 79, 11567-82.
    (27) Hatcher, J. M.; Coltart, D. M. J. Am. Chem. Soc. 2010, 132, 4546-4547.
    (28) (a) Lopes, S. M. M.; Cardoso, A. L.; Lemos, A.; Pinho, E. M. T. Chem. Rev. 2018, 118, 11324-11352. (b) Chen, J. R.; Dong, W. R.; Candy, M.; Pan, F. F.; Jorres, M.; Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924-7.
    (29) Henderson, W. A.; Streuli, C. A. J .Am. Chem. Soc. 1960, 82, 5791-5794.
    (30) Zhang, Y.; Stephens, D.; Hernandez, G.; Mendoza, R.; Larionov, O. V. Chemistry. 2012, 18, 16612-5.
    (31) Boyko, Y. D.; Dorokhov, V. S.; Sukhorukov, A. Y.; Ioffe, S. L. Beilstein. J. Org. Chem. 2017, 13, 2214-2234.
    (32) Ohno, M.; Naruse, N.; Torimitsu, S.; Okamoto, M. Bulletin of the Chemical Society of Japan 1966, 39, 1119-1124.
    (33) (a) Denmark, S. E.; Dappen, M. S. J. Org. Chem. 1984, 49, 798-806. (b) Denmark, S. E.; Dappen, M. S.; Sear, N. L.; Jacobs, R. T. J. Am. Chem. Soc. 1990, 112, 3466-3474. (c) Denmark, S. E.; Dappen, M. S.; Sternberg, J. A. J. Org. Chem. 1984, 49, 4741-4743.
    (34) (a) Lesiv, A. V.; Ioffe, S. L.; Strelenko, Y. A.; Tartakovsky, V. A. Helvetica. Chim. Acta. 2002, 85, 3489-3507. (b) Zhmurov, P. A.; Khoroshutina, Y. A.; Novikov, R. A.; Golovanov, I. S.; Sukhorukov, A. Y.; Ioffe, S. L. Chemistry. 2017, 23, 4570-4578.
    (35) Tanimoto, H.; Yokoyama, K.; Mizutani, Y.; Shitaoka, T.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. J. Org. Chem. 2016, 81, 559-74.
    (36) Woulfe, S. R.; Miller, M. J. J. Org. Chem. 1986, 51, 3133-3139.
    (37) Foster, J. C.; Powell, C. R.; Radzinski, S. C.; Matson, J. B. Org. Lett 2014, 16, 1558-61.
    (38) (a) Vargha, L.; Ramonczai, J.; Bathory, J. J. Am. Chem. Soc. 1949, 71, 2652-2655. (b) Hu, Z.; Zhang, S.; Zhou, W.; Ma, X.; Xiang, G. Bio. Med. Chem. Lett. 2017, 27, 1854-1858.
    (39) Allen, C. F. H.; Richmond, J. H. J. Org. Chem. 1937, 02, 222-226.
    (40) Ojha, D. P.; Prabhu, K. R. Org. Lett. 2015, 17, 18-21.
    (41) (a) Liu, Y. Y.; Yang, X. H.; Yang, J.; Song, R. J.; Li, J. H. Chem. Commun. 2014, 50, 6906-8. (b) Wabnitz, T. C.; Saaby, S.; Jorgensen, K. A. Org. Biomol. Chem. 2004, 2, 828-34.
    (42) Perrone, S.; Capua, M.; Messa, F.; Salomone, A.; Troisi, L. Tetrahedron. 2017, 73, 6193-6198.

    I-2.J. References (Chapter-2):
    (1) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80.
    (2) Burke, M. D.; Schreiber, S. L. Angw. Chem. Int. Ed. 2004, 43, 46-58.
    (3) Tan, D. S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 8565-8566.
    (4) Candeias, N. R.; Assoah, B.; Simeonov, S. P. Chem. Rev. 2018, 118, 10458-10550.
    (5) (a) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Angw. Chem. Int. Ed. 2002, 41, 3059-3061. (b) Chavez, D. E.; Jacobsen, E. N. Org. Lett. 2003, 5, 2563-2565.
    (6) Roush, W. R.; Peseckis, S. M. J. Am. Chem. Soc. 1981, 103, 6696-6704.
    (7) Kim, K.; Maharoof, U. S. M.; Raushel, J.; Sulikowski, G. A. Org. Lett. 2003, 5, 2777-2780.
    (8) Burke, M. D.; Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613.
    (9) Micalizio, G. C.; Schreiber, S. L. Angew. Chem. Int. Ed. 2002, 41, 3272-3276.
    (10) Maity, S.; Saha, M.; Hazra, G.; Ghorai, P. Org. Lett. 2017, 19, 5872-5875.
    (11) Wang, Y.; Du, C.; Wang, Y.; Guo, X.; Fang, L.; Song, M.-P.; Niu, J.-L.; Wei, D. Adv. Syn. Cat. 2018, 360, 2668-2677.
    (12) Karanam, P.; Reddy, G. M.; Lin, W. Synlett 2018, 29, 2608-2622.
    (13) Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Comm. 2012, 48, 8135-8137.
    (14) Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Bio. Chem. 2013, 11, 5156-5161.
    (15) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672.
    (16) Khairnar, P. V.; Lung, T.-H.; Lin, Y.-J.; Wu, C.-Y.; Koppolu, S. R.; Edukondalu, A.; Karanam, P.; Lin, W. Org. Lett. 2019, 21, 4219-4223.
    (17) Zheng, J.; Li, P.; Gu, M.; Lin, A.; Yao, H. Org. Lett. 2017, 19, 2829-2832.
    (18) Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Comm. 2014, 50, 5304-5306.
    (19) O'Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.; Kang, L. J.; Przeworski, K. C. Chem. Eur. J. 2013, 19, 15281-15289.
    (20) Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Madhusudhan Reddy, G.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
    (21) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 834-837.
    (22) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc 2014, 136, 7607-7610.

    I-3.J. References (Chapter-3):
    (1) Galloway, W. R. J. D.; Isidro-Llobet, A.; Spring, D. R. Nat. Commun. 2010, 1, 80.
    (2) Burke, M. D.; Schreiber, S. L. Angew. Chem. In. Ed. 2004, 43, 46-58.
    (3) Tan, D. S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 8565-8566.
    (4) Candeias, N. R.; Assoah, B.; Simeonov, S. P. Chem. Rev. 2018, 118, 10458-10550.
    (5) (a) Gademann, K.; Chavez, D. E.; Jacobsen, E. N. Angew. Chem. In. Ed. 2002, 41, 3059-3061. (b) Chavez, D. E.; Jacobsen, E. N. Org. Lett. 2003, 5, 2563-2565.
    (6) Roush, W. R.; Peseckis, S. M. J. Am. Chem. Soc. 1981, 103, 6696-6704.
    (7) Kim, K.; Maharoof, U. S. M.; Raushel, J.; Sulikowski, G. A. Org. Lett. 2003, 5, 2777-2780.
    (8) Burke, M. D.; Berger, E. M.; Schreiber, S. L. Science 2003, 302, 613.
    (9) Micalizio, G. C.; Schreiber, S. L. Angew. Chem. In. Ed. 2002, 41, 3272-3276.
    (10) Maity, S.; Saha, M.; Hazra, G.; Ghorai, P. Org. Lett. 2017, 19, 5872-5875.
    (11) Wang, Y.; Du, C.; Wang, Y.; Guo, X.; Fang, L.; Song, M.-P.; Niu, J.-L.; Wei, D. Adv. Syn. Cat. 2018, 360, 2668-2677.
    (12) Karanam, P.; Reddy, G. M.; Lin, W. Synlett 2018, 29, 2608-2622.
    (13) Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135-8137.
    (14) Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biom. Chem. 2013, 11, 5156-5161.
    (15) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. In. Ed. 2018, 57, 1668-1672.
    (16) Khairnar, P. V.; Lung, T.-H.; Lin, Y.-J.; Wu, C.-Y.; Koppolu, S. R.; Edukondalu, A.; Karanam, P.; Lin, W. Org. Lett. 2019, 21, 4219-4223.
    (17) Zheng, J.; Li, P.; Gu, M.; Lin, A.; Yao, H. Org. Lett. 2017, 19, 2829-2832.
    (18) Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304-5306.
    (19) O'Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.; Kang, L. J.; Przeworski, K. C. Chem. Eur. J. 2013, 19, 15281-15289.
    (20) Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Madhusudhan Reddy, G.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
    (21) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 834-837.
    (22) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. Am. Chem. Soc. 2014, 136, 7607-7610.

    II-4.K. References (Chapter-4):
    (1) Shaikh, I. R. J. Cat. 2014, 2014, 402860.
    (2) Govender, T.; Arvidsson, P. I.; Maguire, G. E. M.; Kruger, H. G.; Naicker, T. Chem. Rev. 2016, 116, 9375-9437.
    (3) MacMillan, D. W. C. Nat. 2008, 455, 304-308.
    (4) List, B. Chem. Commun. 2006, 819-824.
    (5) (a) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244. (b) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 2458-2460. (c) Jurčík, V.; Wilhelm, R. Org. Bio. Chem. 2005, 3, 239-244.
    (6) Chen, X.; Lu, Z. Org. Bio. Chem. 2017, 15, 2280-2306.
    (7) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874-9875.
    (8) (a) Kanemasa, S. Synlett 2002, 2002, 1371-1387. (b) Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247-12275.
    (9) Nájera, C.; Sansano, J. M.; Yus, M. J. Brazilian Chem. Soc. 2010, 21, 377-412.
    (10) (a) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366-5412. (b) Huisgen, R. J. Org. Chem. 1976, 41, 403-419.
    (11) Teresa, M. V. D. P. e. M. Curr. Org. Chem. 2009, 13, 1406-1431.
    (12) Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387-1390.
    (13) (a) Zhao, Y.-Y.; Zhao, S.; Xie, J.-K.; Hu, X.-Q.; Xu, P.-F. J. Org. Chem. 2016, 81, 10532-10537. (b) Tan, B.; Candeias, N. R.; Barbas, C. F. J. Am. Chem. Soc. 2011, 133, 4672-4675.
    (14) Chen, Y.-R.; Ganapuram, M. R.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W. Chem. Commun. 2018, 54, 12702-12705.
    (15) (a) Levy, M. Thorax 2000, 55, S72. (b) Arnost, M.; Pierce, A.; Haar, E. t.; Lauffer, D.; Madden, J.; Tanner, K.; Green, J. B. Med. Chem. Lett. 2010, 20, 1661-1664.
    (16) (a) Wang, L.; Yang, Z.; Ni, T.; Shi, W.; Guo, Y.; Li, K.; Shi, A.; Wu, S.; Sheng, C. B. Med. Chem. Let. 2020, 30, 126662. (b) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Het. Chem. 2007, 44, 49-53.
    (17) Li, J.-H.; Cui, Z.-H.; Du, D.-M. Org. Chem. Front. 2016, 3, 1087-1090.
    (18) Zheng, W.; Zhang, J.; Liu, S.; Yu, C.; Miao, Z. RSC. Adv. 2015, 5, 91108-91113.
    (19) Leng, H.-J.; Li, Q.-Z.; Zeng, R.; Dai, Q.-S.; Zhu, H.-P.; Liu, Y.; Huang, W.; Han, B.; Li, J.-L. Adv. Syn. Cat. 2018, 360, 229-234.
    (20) Li, X.; Chen, F.-Y.; Kang, J.-W.; Zhou, J.; Peng, C.; Huang, W.; Zhou, M.-K.; He, G.; Han, B. J. Org. Chem. 2019, 84, 9138-9150.
    (21) Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K. J. Agri. Food. Chem. 2003, 51, 389-393.
    (22) (a) Guo, H.; Herdtweck, E.; Bach, T. Synfacts 2010, 2010, 1385-1385. (b) Zhao, W.; Xu, L.; Ding, Y.; Niu, B.; Xie, P.; Bian, Z.; Zhang, D.; Zhou, A. Eur. J. Org. Chem. 2016, 2016, 325-330.
    (23) Lee, Y.-T.; Das, U.; Chen, Y.-R.; Lee, C.-J.; Chen, C.-H.; Yang, M.-C.; Lin, W. Adv. Syn. Cat. 2013, 355, 3154-3160.
    (24) (a) Fan, L.-P.; Li, P.; Li, X.-S.; Xu, D.-C.; Ge, M.-M.; Zhu, W.-D.; Xie, J.-W. J. Org. Chem. 2010, 75, 8716-8719. (b) Gao, Y.; Ren, Q.; Wang, L.; Wang, J. Chem. Eur. J. 2010, 16, 13068-13071.
    (25) Chen, Y.-R.; Ganapuram, M. R.; Hsieh, K.-H.; Chen, K.-H.; Karanam, P.; Vagh, S. S.; Liou, Y.-C.; Lin, W. Chem. Comm. 2018, 54, 12702-12705.
    (26) Vagh, S. S.; Karanam, P.; Liao, C.-C.; Lin, T.-H.; Liou, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Adv. Syn. Cat. 2020, 362, 1679-1685.
    (27) Wang, Z.-H.; Wu, Z.-J.; Huang, X.-Q.; Yue, D.-F.; You, Y.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-C. Chem. Commun. 2015, 51, 15835-15838.
    (28) Zhao, C.; Shi, K.; He, G.; Gu, Q.; Ru, Z.; Yang, L.; Zhong, G. Org. Lett. 2019, 21, 7943-7947.

    無法下載圖示 本全文未授權公開
    QR CODE