研究生: |
簡維良 Wei-Liang Chien |
---|---|
論文名稱: |
On the distribution of the leading statistics for the bounded deviated permutations On the distribution of the leading statistics for the bounded deviated permutations |
指導教授: |
林延輯
Lin, Yen-Chi |
學位類別: |
碩士 Master |
系所名稱: |
數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 18 |
中文關鍵詞: | 有界偏差排列 、第一位置統計量 、常態分佈 、雙變數生成函數 、quasi-powers 定理 、Hayman's 公式 |
英文關鍵詞: | bounded deviated permutation, leading statistic, normal distribution, bivariate generating function, quasi-powers theorem, Hayman’s method |
論文種類: | 學術論文 |
相關次數: | 點閱:174 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的研究目的是要在均勻分佈的假設下,探索bounded deviated permutations的第一位置統計量的分佈情形,而我們猜測其將為常態分佈。
定義好與第一位置統計量相關的隨機變數後,藉由考慮雙變數生成函數,我們可以計算此隨機變數的平均數和變異數,本篇論文將把這個方法應用在三個特殊的情形上。因為這個雙變數生成函數的係數並沒有closed form,在計算過程中,我們會使用Hayman's formula求其漸進式。最後,使用電腦計算,這三個特殊的情形確實收斂到常態分佈,證實了我們的猜測。
The purpose of the thesis is to investigate the distribution of the leading statistic in the bounded deviated permutations S_{n+1}^{ℓ,r}, assuming the uniform distribution in S_{n+1}^{ℓ,r}.
Define the random variable X_{n} to take the value k if π₁=k+1 for π=π₁π₂⋯π_{n+1}∈S_{n+1}^{ℓ,r}. By considering the bivariate generating function A(z,u), we could calculate the expected value and the standard deviation for X_{n}. The method is then applied to three specific cases, S_{n+1}^{1,2}, S_{n+1}^{1,3} and S_{n+1}^{2,2}. Since the coefficients λ_{n,k} of the bivariate generating function do not have a closed form, we will apply the Hayman method to get its asymptotic formula. Finally, by running computer programs, the convergence of the normal distribution on these three cases are verified.
1: M. Aigner, A Course in Enumeration, Springer-Verlag Berlin Heidelberg 2007
2 : Sen-Peng Eu, Yen-Chi R. Lin, Yuan-Hsun Lo, Bounded deviated permutations, preprint
3 : Philippe Flajolet, Robert Sedgewick, Analytic Combinatorics, Cambridge University Press 2009
4 : Hayman, Walter, A generalisation of Stirling's formula, Journal für die reine und angewandte Mathematik 196 (1956), 67-95
5 : Herbert S. Wilf, Generatingfunctionology, 2nd edition, 1994