簡易檢索 / 詳目顯示

研究生: 陳威宇
論文名稱: 游離輻射誘發肝癌細胞侵犯機制之動態分析
指導教授: 郭文娟
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 掃描式光學同調斷層儀肝癌細胞放射線侵襲機制
論文種類: 學術論文
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用三維快速高解析掃描式光學同調斷層儀(SS-OCT)系統,分析肝癌細胞受到放射線照射的侵襲能力。實驗過程中,分別從8~48小時,以每4小時的連續時間做量測,最後將SS-OCT在每個時間點取得的多張二維光學同調斷層(OCT)影像進行三維重組,並定量分析肝癌細胞在每個時間點的增生數量、大小變化、隨著時間推移的侵襲移動速率、移動趨勢與軌跡。本研究利用SS-OCT的非侵入式、快速成像,以及能夠呈現完整的三維空間資訊的優點,能夠隨著連續時間觀測受到放射線照射後所誘發的肝癌細胞侵犯機制之動態行為。

    中文摘要...................................................I Abstract..................................................II 目錄.....................................................III 圖目錄索引................................................IV 表目錄索引................................................IX 第一章 緒論................................................1 1.1.研究動機.............................................1 1.2.研究目的.............................................1 1.3.文獻回顧.............................................2 第二章 實驗原理............................................6 2.1 癌細胞特性...........................................6 2.2 肝癌細胞.............................................7 2.3 放射治療.............................................7 2.4 輻射增進癌細胞的侵襲能力.............................8 第三章 實驗製備、架構與方法................................9 3.1 實驗製備.............................................9 3.2 系統架構.............................................9 3.3 實驗方法............................................11 3.4 樣品測試............................................13 3.4.1 Matrigel厚度的影響..............................13 3.4.2 時間對Matrigel膨脹的影響........................15 3.4.3 細胞位置的影響..................................20 第四章 實驗結果與討論.....................................22 4.1 實驗結果............................................22 4.1.1 肝癌細胞的增生數量..............................22 4.1.2 肝癌細胞的侵襲移動速率和大小變化................27 4.1.2.1 肝癌細胞的侵襲移動速率......................27 4.1.2.2 肝癌細胞的大小變化..........................39 4.1.3 肝癌細胞的移動趨勢與軌跡........................42 4.2 結果討論............................................55 第五章 結論與未來展望.....................................62 參考文獻..................................................63

    [1] K. K. Fu, T. L. Phillips, “Biologic rationale of combined radiotherapy and chemotherapy” Hematol Oncol Clin North Am 5, 737–51 (1991)
    [2] J. C. Cheng, V. P. Chuang, S. H. Cheng, Y. M. Lin, T. I. Cheng, P. S. Yang et al. “Unresectable hepatocellular carcinoma treated with radiotherapy and/or chemoembolization” Int J Cancer 96, 243-52 (2001)
    [3] S. X. Liang, X. D. Zhu, H. J. Lu, C. Y. Pan , F. X. Li, Q. F. Huang et al. “Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma” Cancer 103 2181-8 (2005)
    [4] C. Wild-Bode, M. Weller, A. Rimner, J. Dichgans, W. Wick “Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma” Cancer Res 61 2744–50 (2001)
    [5] K. Camphausen, M. A. Moses, W. D. Beecken, M. K. Khan, J. Folkman, M. S. O'Reilly “Radiation therapy to a primary tumor accelerates metastatic growth in mice” Cancer Res 61 2207–11 (2001)
    [6] L. H. Wei, K. P. Lai, C. A. Chen, C. H. Cheng, Y. J. Huang, C. H. Chou, M. L. Kuo, and C. Y. Hsieh “Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor” kB Oncogene 24 390-8 (2005)
    [7] JC. H. Cheng, C. H. Chou, M. L. Kuo, and C. Y. Hsieh “Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kB signal transduction pathway” Oncogene 25 7009-18 (2006)
    [8] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pufialito, and J. G. Fujimoto “Optical coherence tomography” Science 254 1178-81 (1991)
    [9] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt “Sensitivity advantage of swept source and Fourier domain optical coherence tomography” Optics Express 11 2183-9 (2003)
    [10] S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter” Optics Letters 28 1981-3 (2003)
    [11] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma “High-speed optical frequency-domain imaging” Optics Express 11 2953-63 (2003)
    [12] C. C. Chang, J.Y. Shih, Y. M. Jeng, J. L. Su, B. Z. Lin, S. T. Chen, Y. P. Chau, P. C. Yang, and M. L. Kuo “Connective Tissue Growth Factor and Its Role in Lung Adenocarcinoma Invasion and Metastasis” J. Natl. Cancer Inst. 96 364 (2004)
    [13] J. S. King, R. Teo, J. Ryves, J. V. Reddy, O. Peters, B. Orabi, O. Hoeller, R. S. B. Williams and A. Harwood “The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells” Dis. Model Mech., 2(5-6): 306 (2009)
    [14] F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer “The third dimension bridges the gap between cell culture and live tissue” Nat. Rev. Mol. Cell Biol. 8, 839 (2007)
    [15] H. Liu and K. Roy “Biomimetic Three-Dimensional Cultures Significantly Increase Hematopoietic Differentiation Efficacy of Embryonic Stem Cells” Tissue Eng. 11, 319 (2005)
    [16] L. H. Wei, K. P. Lai, C. A. Chen, C. H. Cheng, Y. J. Huang, C. H. Chou, M. L. Kuo, and C. Y. Hsieh “Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor B” Oncogene 24 390 (2005)
    [17] JC. H. Cheng, C. H. Chou, M. L. Kuo, and C. Y. Hsieh “Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF- B signal transduction pathway” Oncogene 25 7009 (2006)
    [18] M. Wiemann, L. Winkler, and D. Bingmann “Light microscopic methods to study cells on nontransparent materials” Materwiss. Werksttech. 32, 976 (2001)
    [19] P. Friedl “Dynamic imaging of cellular interactions with extracellular matrix” Histochem. Cell Biol. 122, 183 (2004)
    [20] M. J. Stoddard, D. B. Jones, and R. G. Richards, “Establishing a 3D ex vivo culture system for investigations of bone metabolism” Eur. Cell. Mater. 14, 50 (2007)
    [21] R. G. M. Breuls, A. Mol, R. Petterson, C. W. J. Oomens, F. P. T. Baaijens, and C. V. C. Bouten “Monitoring Local Cell Viability in Engineered Tissues: A Fast, Quantitative, and Nondestructive Approach” Tissue Eng. 9 269, (2003)
    [22] P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy” Ann. Rev. Biomed. Eng. 2 399, (2000)
    [23] S. Radhakrishnan, A. M. Rollins, J. E. Roth et al. “Real-Time Optical Coherence Tomography of the Anterior Segment at 1310 nm” Arch Ophthalmol. 119, 1179 (2001)
    [24] S. Yazdanfar, M. D. Kulkarni, J. A. Izatt “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography” Opt Express 1, 424 (1997)
    [25] S. A. Boppart, G. J. Tearney, B. E. Bouma et al. “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography” Proc Natl Acad Sci U S A. 94, 4256 (1997)
    [26] D. Huang, E. A. Swanson, C. P. Lin et al. “Optical coherence tomography” Science. 254, 1178 (1991)
    [28] M. V. Jr Sivak, K. Kobayashi, J. A. Izatt et al. “High-resolution endoscopic imaging of the GI tract using optical coherence tomography” Gastrointest Endosc. 51, 474 (2000)
    [29] J. M. Schmitt “Optical coherence tomography (OCT): a review” IEEE J. Select. Topics. Quantum Electon. 5, 1205 (1999)
    [30] J. G. Fujimoto “Optical coherence tomography for ultrahigh resolution in vivo imaging” Nat. Biotechnol. 21, 1361 (2003)
    [31] A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, “Three dimensional OCT images from retina and skin” Opt. Express 7, 292 (2000)
    [32] S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “In vivo cellular optical coherence tomography imaging” Nat. Med. 4, 861 (1998)
    [33] S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto “Investigation of developing embryonic morphology using optical coherence tomography” Dev. Biol. 177, 54 (1996)
    [34] W. Tan, A. L. Oldenburg, J. J. Norman, T. A. Desai, and S. A. Boppart, "Optical coherence tomography of cell dynamics in three-dimensional tissue models," Opt. Express 14, 7159-7171 (2006)
    [35] King, Roger John Benjamin 2000 Cancer Biology: Prentice Hall, Second Edition
    [36] 詹哲泓, "Optical coherence tomography for quantifying the radiation-enhanced tumor cell invasion imaging 光學同調斷層造影術對輻射誘發腫瘤細胞侵襲能力之定量分析", 國立台灣師範大學光電科技研究所碩士論文, 民國九十七年七月

    無法下載圖示 本全文未授權公開
    QR CODE