簡易檢索 / 詳目顯示

研究生: 林俐吟
Lin, Li-Yin
論文名稱: 聽覺訊息對桌球擊球表現之影響
The Effect of Auditory Perception on Table Tennis
指導教授: 劉有德
Liu, Yeou-Teh
口試委員: 劉有德
Liu, Yeou-Teh
莊國良
Chuang, Kuo-Liang
陳尹華
Chen, Yin-Hua
口試日期: 2024/06/07
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 84
中文關鍵詞: 外在知覺聲音事件動作時宜截斷性行動
英文關鍵詞: exteroception, acoustic event, movement timing, interceptive action
DOI URL: http://doi.org/10.6345/NTNU202401158
論文種類: 學術論文
相關次數: 點閱:116下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 桌球是環境不斷變化的開放性運動,球員須根據來球特性執行適當時宜的揮拍動作,建立知覺與行動的配連關係。視覺與聽覺為感知環境訊息的重要知覺,成功的擊球除了要以視覺感知空間變化,球與桌面、球拍的撞擊聲音形成間斷的時間性訊息,也可能是球員在擊球時會利用的訊息來源。本研究參與者為11名大專甲組桌球運動員,在正常情境、以耳罩與白噪音限制聽覺、以遮蔽式眼鏡限制視覺之情境中,以桌球正手切球及正手拉球分別回擊下旋短球與下旋長球。以三台高速攝影機拍攝動作,使用Simi Motion (9.2.1) 軟體擷取球拍與球的三維運動學數據。以單一樣本t考驗檢驗知覺表現與擊球-最大拍速時間差;以二因子重複量數變異數分析檢視運動學參數與動作時宜在擊球技術與知覺情境間的交互作用;另以個案分析檢驗個人在操弄情境間的表現差異。統計水準設為α=.05。桌球聲音事件的間隔時間隨著長短球而有不同,球員能憑聲音辨識球的落點區域。在只有間斷性的聽覺訊息時,球員延遲啟動動作、減少動作時間與距離且動作變異性較大,雖然動作結束的時間點不一定會受到影響,但缺乏視覺依舊使擊球表現較差。缺乏聽覺訊息的影響主要為個體在動作終點的表現,以及較低的擊球拍速與較低的擊球初速,並且在切球擊球前即達到最大拍速。此外,球員在一般情境也無法總是非常準確地以最大拍速擊球。本研究以檢視球員受到不同知覺訊息來源影響的檢驗方法,發現聲音雖然不是擊球時的主要使用線索,但缺乏聲音可能會降低球員對擊球時宜的掌握。桌球運動中的聲音訊息可輔助視覺訊息提供準備擊球前的環境賦使。

    Table tennis players constantly update the relevant environmental information to hit the ball at precise position and timing. In addition to the visual information, players may also take advantage of the auditory information from the sound of ball-racket and ball-table impact, providing them with temporal and spatial cues of oncoming balls. This study investigated the role of acoustic cues in table tennis. Eleven elite varsity table tennis players performed the forehand push and topspin-drive strokes to return the shots in normal, no-hearing with earmuffs and white noise, and no-vision with goggles conditions. Three high-speed cameras and the Simi Motion 9.2.1 captured and digitized the 3-D kinematics of the racket and the ball. One-sample t-tests were used to examine auditory perceptual performance and the time difference between hitting and the maximum racket speed. Two-way repeated measures ANOVAs were used to examine the effects of striking techniques and perceptual conditions on the group's kinematic performance and movement timing. Additionally, performances were analyzed individually. The statistically significant level was set at 𝛼=.05. The distinguishable acoustic information on the ball location afforded players performing push or topspin-drive strokes. Under no-vision condition, participants initiated movements later, reduced movement times and distances, and exhibited higher movement variability. Depriving auditory information affected individuals’ performance mainly for terminal movement. Although the sounds did not play the dominant role as cues to action, eliminating players’ acoustic information impaired their perception-action coupling in the striking task. We suggest that the acoustic cues complement the visual perception to provide the affordance for preparing for the striking task in table tennis.

    Abstract i 摘要 ii Table of contents iii List of Tables v List of Figures vi Chapter I Introduction 1 Background 1 The research questions and purpose of the study 2 Significance of the study 3 Limitations 4 Operational definitions 4 Chapter II Literature Review 7 Characteristics of table tennis 7 Visual perception in table tennis 9 Auditory perception in table tennis 12 Perception and action 16 Summary 20 Chapter III Pilot Study 21 Participants 21 Design and procedures 21 Data processing and statistical analyses 24 Results 25 Discussion 29 Chapter IV Methods 33 Participants 33 Tasks 33 Equipment and facility 33 Procedure 34 Data processing 35 Statistical analyses 37 Chapter V Results 39 Time interval of acoustic events 39 Striking performance in no-vision condition 40 Kinematics performance 41 Movement initiation and finish time lags 48 Striking outcome 49 Individual performances 50 Chapter VI Discussion 67 Temporal features of the acoustic events 67 Effect of depriving visual perception 69 Effect of eliminating auditory perception 71 Individual characteristic 72 Conclusions 77 References 78

    Aleksovski, A. (2015). Forehand backswing-from theory to practice. Activities in Physical Education and Sport, 3(2), 229-231.
    Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6(4), 283-319.
    Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353-367.
    Bańkosz, Z., & Winiarski, S. (2016). The kinematics of table tennis racquet: differences between topspin strokes. The Journal of Sports Medicine and Physical Fitness, 57(3), 202-213.
    Bardy, B. G., & Laurent, M. (1998). How is body orientation controlled during somersaulting? Journal of Experimental Psychology: Human Perception and Performance, 24(3), 963.
    Bischoff, M., Zentgraf, K., Pilgramm, S., Stark, R., Krüger, B., & Munzert, J. (2014). Anticipating action effects recruits audiovisual movement representations in the ventral premotor cortex. Brain and Cognition, 92, 39-47.
    Blank, P., Hoßbach, J., Schuldhaus, D., & Eskofier, B. M. (2015, September 7-11). Sensor-based stroke detection and stroke type classification in table tennis. The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan. (pp. 93-100).
    Bootsma, R. J., & van Wieringen, P. C. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 21.
    Bootsma, R. J., Fernandez, L., Morice, A. H., & Montagne, G. (2010). Top-level players' visual control of interceptive actions: Bootsma and van Wieringen (1990) 20 years later. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 1056–1063.
    Cañal-Bruland, R., Müller, F., Lach, B., & Spence, C. (2018). Auditory contributions to visual anticipation in tennis. Psychology of Sport and Exercise, 36, 100-103.
    Cao, Z., Xiao, Y., Lu, M., Ren, X., & Zhang, P. (2020). The impact of eye-closed and weighted multi-ball training on the improvement of the stroke effect of adolescent table tennis players. Journal of Sports Science & Medicine, 19(1), 43.
    Chuang, K.-L. (2017). Exploring the timing performance of table tennis drives: from drill to match [Unpublished doctoral dissertation]. National Taiwan Normal University.
    Chuang, K.-L., Liu, Y.-T. (2017). The effect of driving speeds and practice conditions on the performance of the table tennis forehand drives. Physical Education Journal, 50(2), 165-176.
    Elliott, B. (2000). Hitting and kicking. In V. Zatsiorsky (Ed.), Biomechanics in sport: Performance enhancement and injury prevention (pp. 487-504). Blackwell Science Ltd.
    Faber, I. R., Oosterveld, F. G., & Nijhuis-Van der Sanden, M. W. (2014). Does an eye-hand coordination test have added value as part of talent identification in table tennis? A validity and reproducibility study. PLoS One, 9(1), e85657.
    Fujita, R. A., Santos, D. P. R., Barbosa, R. N., Palucci Vieira, L. H., Santiago, P. R. P., Zagatto, A. M., & Gomes, M. M. (2023). Auditory information reduces response time for ball rotation perception, increasing counterattack performance in table tennis. Research Quarterly for Exercise and Sport, 94(1), 55-63.
    Gallwey, W. T. (2009). The inner game of golf. Random House.
    Gaver, W. W. (1993). What in the world do we hear?: An ecological approach to auditory event perception. Ecological psychology, 5(1), 1-29.
    Gibson, J. J. (1979). The ecological approach to visual perception., NJ: Lawrence Erlbaum Associates.
    Guo, W., Liang, M., Xiao, D., & Hao, W. (2020). A systematic and comparative study on the line-changing strategies in top-level table tennis players. International Journal of Performance Analysis in Sport, 20(6), 1018-1034.
    Hermann, T., Höner, O., & Ritter, H. (2006). AcouMotion–an interactive sonification system for acoustic motion control. Gesture in Human-Computer Interaction and Simulation: 6th International Gesture Workshop, GW 2005, Berder Island, France, May 18-20, 2005, Revised Selected Papers 6.
    Ibrahim, N., Abu Osman, N. A., Mokhtar, A. H., Arifin, N., Usman, J., & Shasmin, H. N. (2022). Contribution of the arm segment rotations towards the horizontal ball and racket head velocities during forehand long shot and drop shot services in table tennis. Sports Biomechanics, 21(9), 1065-1081.
    Iino, Y., & Kojima, T. (2009). Kinematics of table tennis topspin forehands: effects of performance level and ball spin. Journal of Sports Sciences, 27(12), 1311-1321.
    Kennel, C., & Pizzera, A. (2016). Auditory action perception. In Performance Psychology (pp. 235-251). Elsevier.
    Klein-Soetebier, T., Noël, B., & Klatt, S. (2021). Multimodal perception in table tennis: the effect of auditory and visual information on anticipation and planning of action. International Journal of Sport and Exercise Psychology, 19(5), 834-847.
    Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception and Psychophysics, 21, 575-580.
    Loh, T. C., & Krasilshchikov, O. (2015). Competition performance variables differences in elite and U-21 international men singles table tennis players. Journal of Physical Education and Sport, 15(4).
    MacPherson, A. C., Collins, D., & Obhi, S. S. (2009). The importance of temporal structure and rhythm for the optimum performance of motor skills: A new focus for practitioners of sport psychology. Journal of Applied Sport Psychology, 21(S1), S48-S61.
    Malagoli Lanzoni, I., Di Michele, R., & Merni, F. (2014). A notational analysis of shot characteristics in top-level table tennis players. European Journal of Sport Science, 14(4), 309-317.
    Marinovic, W., Iizuka, C. A., & Freudenheim, A. M. (2004). Control of striking velocity by table tennis players. Perceptual and Motor Skills, 99(3), 1027-1034.
    McAfee, R. (2009). Table tennis: Steps to success. Human Kinetics.
    Murgia, M., Hohmann, T., Galmonte, A., Raab, M., & Agostini, T. (2012). Recognizing one's motor actions through sound: the role of temporal factors. Perception, 41(8), 976-987.
    Murgia, M., Prpic, V., O, J., McCullagh, P., Santoro, I., Galmonte, A., & Agostini, T. (2017). Modality and perceptual-motor experience influence the detection of temporal deviations in tap dance sequences. Frontiers in Psychology, 8, 1340.
    Negulescu, I., Mocanu, M., & Cristea, F. (2018). Importance of topspin and retopspin in table tennis for female juniors II. European Proceedings of Social and Behavioural Sciences.
    Neuhoff, J. (2021). Ecological psychoacoustics. Brill.
    Newell, K. M. (1986). Constraints on the development of coordination. Motor development on children: Aspects of Coordination and Control.
    Otte, F. W., Millar, S.-K., & Klatt, S. (2021). What do you hear? The effect of stadium noise on football players’ passing performances. European Journal of Sport Science, 21(7), 1035-1044.
    Park, S. H., Kim, S., Kwon, M., & Christou, E. A. (2016). Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus. Applied Physiology, Nutrition, and Metabolism, 41(3), 244-248.
    Pradas, F., Martínez, P., Rapún, M., Bataller, V., Castellar, C., & Carrasco, L. (2011, May 5-7). Assessment of table tennis temporary structure. The 12th ITTF Sport Science Congress, Rotterdam, Netherlands.
    Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 1085.
    Ripoll, H. (1989). Uncertainty and visual strategies in table tennis. Perceptual and Motor Skills, 68(2), 507-512.
    Rodrigues, S. T., Vickers, J. N., & Williams, A. M. (2002). Head, eye, and arm coordination in table tennis. Journal of Sports Sciences, 20(3), 187-200.
    Russell, D. A. (2018). Acoustics of ping-pong: Vibroacoustic analysis of table tennis rackets and balls. Journal of Sports Sciences, 36(23), 2644-2652.
    Santos, D., Barbosa, R. N., Vieira, L., Santiago, P., Zagatto, A. M., & Gomes, M. M. (2017). Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis. Journal of Human Kinetics, 55, 19-27.
    Seemiller, D., & Holowchak, M. (1997). Winning table tennis. Human Kinetics.
    Sheppard, A., & Li, F.-X. (2007). Expertise and the control of interception in table tennis. European Journal of Sport Science, 7(4), 213-222.
    Shim, J., & Carlton, L. G. (1997). Perception of kinematic characteristics in the motion of lifted weight. Journal of Motor Behavior, 29(2), 131-146.
    Shinkai, R., Ando, S., Nonaka, Y., Kizuka, T., & Ono, S. (2022). Visual strategies for eye and head movements during table tennis rallies. Frontiers in Sports and Active Living, 4, 897373.
    Sors, F. (2017). Perceiving opponent's action in ball sports: The contribution of early auditory and visual information. [Unpublished doctoral dissertation]. University of Trieste.
    Sors, F., Lath, F., Bader, A., Santoro, I., Galmonte, A., Agostini, T., & Murgia, M. (2018). Predicting the length of volleyball serves: The role of early auditory and visual information. PLoS One, 13(12), e0208174.
    Sors, F., Murgia, M., Santoro, I., Prpic, V., Galmonte, A., & Agostini, T. (2017). The contribution of early auditory and visual information to the discrimination of shot power in ball sports. Psychology of Sport and Exercise, 31, 44-51.
    Stanton, T. R., & Spence, C. (2020). The influence of auditory cues on bodily and movement perception. Frontiers in Psychology, 10, 3001.
    Stoffregen, T. A., & Flynn, S. B. (1994). Visual perception of support-surface deformability from human body kinematics. Ecological Psychology, 6(1), 33-64.
    Takeuchi, T. (1993). Auditory information in playing tennis. Perceptual and motor skills, 76(3 Pt 2), 1323-1328.
    Van Soest, A., Casius, L., De Kok, W., Krijger, M., Meeder, M., & Beek, P. (2010). Are fast interceptive actions continuously guided by vision? Revisiting Bootsma and van Wieringen (1990). Journal of Experimental Psychology: Human Perception and Performance, 36(4), 1040.
    Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, and Computers, 36(4), 625-629.
    Vickers, J. N., & Adolphe, R. M. (1997). Gaze behavior during a ball tracking and aiming skill. International Journal of Sports Vision, 4, 8-27.
    Vincze, A., Iliescu, D., & Jurchiș, R. (2022). Quiet eye supports winner shots in a simulated table tennis competition. Scandinavian Journal of Medicine and Science in Sports, 33(5), 631-640.
    Walker, B. N., & Kramer, G. (2004). Ecological psychoacoustics and auditory displays: Hearing, grouping, and meaning making. In Ecological psychoacoustics (pp. 149-174). Brill.
    Warren Jr, W. H. (1990). The perception-action coupling. Sensory-Motor Organizations and Development in Infancy and Early Childhood. Proceedings of the NATO Advanced Research Workshop on Sensory-Motor Organizations and Development in Infancy and Early Childhood, Chateau de Rosey, France (Vol. 56). Springer Science & Business Media.
    Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.
    Williams, A. M., Ward, P., Knowles, J. M., & Smeeton, N. J. (2002). Anticipation skill in a real-world task: measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8(4), 259.
    Youssefa, S. (2014). The impact of developing coordination abilities on the skill abilities for table tennis juniors. Sociology Study, 4(10), 829-838.
    Zhang, Z., Halkon, B., Chou, S. M., & Qu, X. (2016). A novel phase-aligned analysis on motion patterns of table tennis strokes. International Journal of Performance Analysis in Sport, 16(1), 305-316.
    Zhou, X. (2022). Explanation and verification of the rules of attack in table tennis tactics. BMC Sports Science, Medicine and Rehabilitation, 14(1), 1-8.

    下載圖示
    QR CODE