簡易檢索 / 詳目顯示

研究生: 鄭建文
Jian-Wen Zheng
論文名稱: TBP功能缺失參與阿茲海默氏症果蠅模式中之類澱粉蛋白毒性
TBP deactivation contributes to amyloid mediated toxicity in a Drosophila model of Alzheimer’s disease
指導教授: 蘇銘燦
Su, Ming-Tsan
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 36
中文關鍵詞: 類澱粉蛋白TBP阿茲海默氏症
英文關鍵詞: Aβ-42, amyloid
DOI URL: https://doi.org/10.6345/NTNU202205615
論文種類: 學術論文
相關次數: 點閱:88下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質不正常的折疊聚集是許多退化性神經疾病的指標之一,其中也包括阿茲海默症。目前已知阿茲海默症常見的致病原因有二,其一為細胞外β類澱粉蛋白質堆積;另一病徵則為Tau蛋白質堆積所形成的神經纖維狀糾結並造成漸進性的腦皮層萎縮。不正常的蛋白質堆積也是其他退化性神經疾病的常見特徵之一,包括遺傳性的多麩醯胺酸疾病亨丁頓舞蹈症和小腦萎縮症。在上述的這些退化性疾病當中皆有一定比例的不可溶性的轉錄因子TATA box binding protein(TBP),這些包含麩醯胺酸的不正常折疊堆積也可能是造成阿茲海默症的原因之一。先前已有資料顯示正常野生型的TBP和β類澱粉蛋白質以及Tau蛋白質在阿茲海默症的病人腦中堆積,根據此一證據我們進一步在果蠅模式下實驗證實β類澱粉蛋白質可能透過影響TBP的結合功能或是轉錄功能進而成阿茲海默症的成因之一。我們的研究發現大量表現β類澱粉蛋白質在果蠅的特定組織部位造成許多病理上的症狀,包括複眼細胞的退化、運動行為缺陷及壽命減短等現象;相反地增加TBP的表現則能有效的改善上述退化及行為等性狀,而抑制果蠅內生性的TBP蛋白則使得這些性狀更加嚴重。另外,運用EMSA的方式證實類澱粉蛋白濃度提高造成了TBP對TATA DNA的結合力下降。在果蠅的腦中我們也發現隨著時間上升類澱粉蛋白聚集也因共同表現TBP而減少了聚集的數量,顯示出正常功能的TBP能夠有效的減緩類澱粉蛋白造成的毒性。我們的研究結果顯示出TBP參與阿茲海默症果蠅致病機轉。

    Protein aggregation is a pathological hallmark of many neurodegenerative diseases, including Alzheimer’s disease (AD). ADis characterized by extra cellular β-amyloid deposition, Tau-containing neurofibrillary tangles (NFTs) and progressive cortical atrophy. Abnormal protein accumulation is also a common feature of other late onset neurodegenerative diseases, including the heritable polyglutamine (polyQ) disorders such as Huntington disease (HD) and the spinocerebellar ataxias (SCAs). Since TBP is insoluble in the brain AD patients, the accumulation or misfolding of this polyQ containing protein may be acontributing factor in AD. Previous study has demonstrated that wild type length TATA box binding protein(TBP),β-amyloidand Tau-containing NFTs accumulatein AD patient brains. It was hypothesized that TBP inactivation may contribute to the pathogenesis of AD, in which the transactivation activity or binding ability of TBP may be influenced by β-amyloid deposition. In my study. Overexpression ofβ-amyloidin certain tissue causes various phenotypes, including degeneration of photoreceptor cells, defect in mobility and shorten lifespan. The pathological phenotypes of AD is enhanced in the loss-of-function of TBP flies. In contrast, increasing the expression of TBP ameliorates the abovementioned disorders. These observations suggest that loss-of-function of TBP is involved in the pathogenesis of AD. Immunostaining results showed that TBP accumulated and co-localized with amyloid-containing plaque. In addition, we demonstrated that the increase of Aβ-42 concentration was accompanied with the decrease of TBP-DNA bind ability in vitro. Furthermore, overexpression of TBP reduced and delayed deposits in adult brain. In sum, my study demonstrates that deactivation of TBP contributes to the pathogenesis of AD, which provide new insight into the pathogenesis of AD.

    Abstract................2 中文摘要.................4 Introduction............6 The goal of research....9 Material and Methods....11 Results.................16 Discussion..............22 Acknowledgements........24 Reference...............25 Figures.................28

    Alexopoulos, P., Guo, L. H., Jiang, M., Bujo, H., Grimmer, T., Forster, S., . . . Perneczky, R. (2013). Amyloid cascade and tau pathology cerebrospinal fluid markers in mild cognitive impairment with regards to Alzheimer's disease cerebral metabolic signature. J Alzheimers Dis, 36(2), 401-408. doi: 10.3233/JAD-122329
    Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., & Murtagh, F. R. (1995). An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat, 8(6), 429-431. doi: 10.1002/ca.980080612
    Caccamo, A., Magri, A., Medina, D. X., Wisely, E. V., Lopez-Aranda, M. F., Silva, A. J., & Oddo, S. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies. Aging Cell, 12(3), 370-380. doi: 10.1111/acel.12057
    Depardon, F., Cisneros, B., Alonso-Vilatela, E., & Montanez, C. (2001). Myotonic dystrophy protein kinase (DMPK) gene expression in lymphocytes of patients with myotonic dystrophy. Arch Med Res, 32(2), 123-128.
    Finelli, A., Kelkar, A., Song, H. J., Yang, H., & Konsolaki, M. (2004). A model for studying Alzheimer's Abeta42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci, 26(3), 365-375.
    Giacobini, E., & Gold, G. (2013). Alzheimer disease therapy-moving from amyloid-beta to tau. Nat Rev Neurol, 9(12), 677-686. doi: 10.1038/nrneurol.2013.223
    Gill, G., & Tjian, R. (1992). Eukaryotic coactivators associated with the TATA box binding protein. Curr Opin Genet Dev, 2(2), 236-242.
    Glenner, G. G., & Wong, C. W. (1984). Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun, 122(3), 1131-1135.
    Haass, C. (2004). Take five--BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J, 23(3), 483-488. doi: 10.1038/sj.emboj.7600061
    Hernandez, N. (1993). TBP, a universal eukaryotic transcription factor? Genes Dev, 7(7B), 1291-1308.
    Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., MacDonald, M. E., & Gusella, J. F. (1998). Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat Cell Mol Genet, 24(4), 217-233.
    Kaytor, M. D., & Warren, S. T. (1999). Aberrant protein deposition and neurological disease. J Biol Chem, 274(53), 37507-37510.
    Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., . . . Tsuji, S. (1999). A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet, 8(11), 2047-2053.
    Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 82(12), 4245-4249.
    Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., . . . Ross, C. A. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science, 291(5512), 2423-2428. doi: 10.1126/science.1056784
    Perez, M. K., Paulson, H. L., Pendse, S. J., Saionz, S. J., Bonini, N. M., & Pittman, R. N. (1998). Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol, 143(6), 1457-1470.
    Perutz, M. F. (1996). Glutamine repeats and inherited neurodegenerative diseases: molecular aspects. Curr Opin Struct Biol, 6(6), 848-858.
    Reid, S. J., van Roon-Mom, W. M., Wood, P. C., Rees, M. I., Owen, M. J., Faull, R. L., . . . Snell, R. G. (2004). TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease. Brain Res Mol Brain Res, 125(1-2), 120-128.
    Reid, S. J., Whittaker, D. J., Greenwood, D., & Snell, R. G. (2009). A splice variant of the TATA-box binding protein encoding the polyglutamine-containing N-terminal domain that accumulates in Alzheimer's disease. Brain Res, 1268, 190-199. doi: 10.1016/j.brainres.2009.03.004
    Rich, T., Assier, E., Skepper, J., Segard, H. B., Allen, R. L., Charron, D., & Trowsdale, J. (1999). Disassembly of nuclear inclusions in the dividing cell--a novel insight into neurodegeneration. Hum Mol Genet, 8(13), 2451-2459.
    Roeder, R. G. (1991). The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem Sci, 16(11), 402-408.
    Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., . . . Nomenclature Committee of the International Society of, A. (2012). Amyloid fibril protein nomenclature: 2012 recommendations from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid, 19(4), 167-170. doi: 10.3109/13506129.2012.734345
    Suhr, S. T., Senut, M. C., Whitelegge, J. P., Faull, K. F., Cuizon, D. B., & Gage, F. H. (2001). Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol, 153(2), 283-294.
    TenHarmsel, A., & Biggin, M. D. (1995). Bending DNA can repress a eukaryotic basal promoter and inhibit TFIID binding. Mol Cell Biol, 15(10), 5492-5498.
    Uchihara, T., Fujigasaki, H., Koyano, S., Nakamura, A., Yagishita, S., & Iwabuchi, K. (2001). Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immunofluorescence study. Acta Neuropathol, 102(2), 149-152.
    van Roon-Mom, W. M., Reid, S. J., Jones, A. L., MacDonald, M. E., Faull, R. L., & Snell, R. G. (2002). Insoluble TATA-binding protein accumulation in Huntington's disease cortex. Brain Res Mol Brain Res, 109(1-2), 1-10.
    Yanagisawa, H., Bundo, M., Miyashita, T., Okamura-Oho, Y., Tadokoro, K., Tokunaga, K., & Yamada, M. (2000). Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine. Hum Mol Genet, 9(9), 1433-1442.

    下載圖示
    QR CODE