簡易檢索 / 詳目顯示

研究生: 吳俊甫
Wu, Chun-Fu
論文名稱: 利用密度泛函理論計算二氧化碳還原反應在銅與銅合金上的反應機構
Mechanistic study of carbon dioxide reduction on Cu-based materials by Density Functional Theory calculation
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 57
中文關鍵詞: 密度泛函理論二氧化碳還原反應甲醇反應機構
英文關鍵詞: DFT, carbon dioxide reduction reaction, methanol, mechanism
DOI URL: http://doi.org/10.6345/THE.NTNU.DC.015.2018.B05
論文種類: 學術論文
相關次數: 點閱:162下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們應用密度泛函理論計算研究了二氧化碳還原反應的機理,在具有前景的銅基材料催化劑中,該反應最常見的產物生成了甲醇。系統性的檢查發現,生成甲酸根 (HCOO) 和羧基(COOH) 是關鍵的兩個反應步驟。為了顯示結構效應,我們首先檢查Cu(100) 和Cu(111) 表面上的還原反應以揭示結構效應;此外,為了研究電子效應,我們還研究了在純銅、銅銀和銅金合金表面上的反應,其中銅表面25%的原子被其他元素原子替代。結構效應研究發現Cu(100) 表面上的中間體有比Cu(111) 表面更強的吸附能,誘發更多的放熱反應能量和更低的活化屏障,表示在鬆弛的Cu(100) 表面上具有更好的活性。電子效應結果表明,用銀和金取代表面銅可進一步降低能量,提高還原反應活性,而銀的取代稍好於金。在所有研究的表面上,甲酸根和羧基途徑中的速率決定步驟分別是HOCOH→COH + OH。最後,分析這些表面的狀態密度(DOS) 和相關的吸附情況,以揭示能量預測背後的化學反應。

    In the present study, we applied density functional theory (DFT) calculation to investigate the mechanism of carbon dioxide reduction reaction forming the most common product of methanol on the promising materials of copper-based catalysts. Two key reaction pathways through carboxyl (COOH) and formate (HCOO) were systematically examined, denoted as Pathway I and II, respectively. We initially examine the reduction reaction on Cu(100) and Cu(111) surfaces to reveal the structural effects; additionally, we examine the reaction on pure Cu, CuAg and CuAu bimetallic surfaces, in which 25% of surface Cu was replaced with the foreign elements, to study the electronic effect. The structural effect study found that Cu(100) surface has more exothermic reaction energy and lower activation barriers on Pathway I, while Cu(111) has lower energetic on Pathway II, attributable to the difference of the adsorption energies on those two surfaces. The energetic results suggest that the structural effect might change the reaction pathway, but less likely alter the overall activity. The electronic effect result showed that substituting surface Cu with both Ag and Au can further lower the energetics and enhance the reduction reaction activity, while the substitution of Ag is somewhat better than that of Au. The rate determining steps in the formate and carboxyl pathways are HOCOH  COH + OH, respectively, on all the studied surfaces. Finally, density of state (DOS) of those surfaces and the related adsorptions were analyzed to reveal the chemistry behind the energetic prediction.

    第一章 緒論 1 1.1 前言 1 1.2 二氧化碳還原反應 2 1.3 二氧化碳還原機構 3 1.4 研究方向 5 第二章 理論原理及計算 6 2.1 密度泛函理論 6 2.1.1 Born-Oppenheimer approximation 6 2.1.1 Kohn-Sham energy function 7 2.2 交換關聯函數 8 2.2.1 局部密度近似法(LDA) 8 2.2.2 廣義梯度近似法(GGA) 8 2.3 自洽過程 9 2.4 基底 (Basis set) 9 2.5 布里淵區(Brillouin zone) 10 2.6 k-point mesh 11 2.7 參數設定 11 2.7.1 INCAR 12 2.7.2 KPOINT 13 2.7.3 POSCAR 14 2.7.4 POTCAR 15 2.7.5 OUTCAR 16 2.7.6 DOSCAR 16 第三章 結果與討論 18 3.1 金屬表面介紹 18 3.1.1 純銅金屬表面: 20 3.1.2 銅、銅銀與銅金合金 21 3.2 表面吸附位置 23 3.2.1 二氧化碳在銅表面的吸附 24 3.2.2 Cu(100) 與Cu(111) 的吸附位置 24 3.2.2 Cu-Ag 與Cu-Au 的吸附位置 28 3.3 吸附能 32 3.3.1 Cu(100)與Cu(111)比較 32 3.3.2 銅、銅銀與銅金合金比較 34 3.4 反應能 38 3.4.1 第一個路徑在Cu(100)與Cu(111)的反應能比較 38 3.4.2 第二個路徑在Cu(100)與Cu(111)的反應能比較 40 3.4.3 第一個路徑在Cu.Cu-Ag與Cu-Au的反應能比較 42 3.4.4 第二個路徑在Cu.Cu-Ag與Cu-Au的反應能比較 43 3.5 活化能 45 3.5.1 第一個路徑在Cu(100)與Cu(111)的活化能比較 45 3.5.2 第二個路徑在Cu(100)與Cu(111)的活化能比較 46 3.5.3 第一個路徑在Cu.Cu-Ag和Cu-Au的活化能比較 47 3.5.4 第二個路徑在Cu.Cu-Ag和Cu-Au的活化能比較 48 3.6 勢能面 50 第四章 結論與未來展望 53 4.1 結論 53 4.2 未來展望 54 4.3 參考資料 55

    Juerg M. Matter,et al, Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions Science VOL 352 ISSUE 6291
    World energy outlook ,International Energy agency
    Daily CO2, CO2.Earth
    Richard Heede, Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010 Climatic Change (2014) 122:229–241
    George A. Olah,et al, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons J. Org. Chem. 2009, 74, 487–498
    David Klein Organic Chemistry 2nd p588
    J. Albo, M. Alvarez-Guerra,P. Castaño and A. Irabien, Towards the electrochemical conversion of carbon dioxide into methanol Green Chem., 2015, 17, 2304–2324
    Cong Liu, et al, CO2 Electrochemical Reduction to Methane and Methanol on Copper-Based Alloys: Theoretical Insight J. Am. Chem. Soc. 2015, 137, 8676−8679
    Diego C. B. Alves, Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction Mater Renew Sustain Energy (2015) 4:2
    Jinli Qiao, Yuyu Liu, Feng Hong and Jiujun Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev., 2014, 43, 631--675
    Weiran Zheng, et al, A tunable metal–polyaniline interface for efficient carbon dioxide electro-reduction to formic acid and methanol in aqueous solution Chem. Commun., 2016, 52, 13901--13904
    Bunyarat Rungtaweevoranit, et al, Copper Nanocrystals Encapsulated in Zr-based Metal–Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol Nano Lett. 2016, 16, 7645−7649
    K.Chenetal, et al, Electrochemical reduction of CO2 on core-shell Cu/Au nanostructure arrays for syngas production Electrochimica Acta239(2017)84–89
    Toru Hatsukade, et al ,Carbon Dioxide Electroreduction using a Silver–Zinc Alloy Energy 2017, 5, 955 -961
    Matej Huš, et al, Mechanism, kinetics and thermodynamics of carbon dioxide hydrogenation to methanol on Cu/ZnAl2O4 spinel-type heterogeneous catalysts Applied Catalysis B: Environmental Volume 207, 15 June 2017, Pages 267-278
    R.P.S. CHAPLIN* and A.A. WRAGG Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation Journal of Applied Electrochemistry 33: 1107–1123, 2003
    Masashi Azuma, et al Electrochemical Reduction of Carbon Dioxide on Various Metal Electrodes in Low-Temperature Aqueous KHCO3 Media J. Electrochem. Soc., Vol. 137, No. 6
    Kendra P. Kuhl,et al., Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces J. Am. Chem. Soc. 2014, 136, 14107−14113
    Jesús Graciani, et al, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 Science VOL 345 ISSUE 6196 546-550
    Ugo Romano, et al, Synthesis of Dimethyl Carbonate from Methanol, Carbon Monoxide, and Oxygen Catalyzed by Copper Compounds Chem. Prod. Res. Dev. 1980, 19, 396-403
    R.A.Koeppel, A.Baiker, A.Wokaun, Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts Applied Catalysis A: General Volume 84, Issue 1, 5 May 1992, Pages 77-102
    Kendra P. Kuhl , et al, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces Energy Environ. Sci., 2012, 5, 7050–7059
    Andrew A. Peterson, et al, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels Energy Environ. Sci., 2010, 3, 1311–1315
    Xue Zhang, et al,Optimum Cu nanoparticle catalysts for CO2hydrogenation towardsmethanol Nano Energy 43 (2018) 200–209
    Dohyung Kim, et al, Synergistic geometric and electronic effects
    for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles Nature Communication | 5:4948
    R. Car and M. Parrinello Unified Approach for Molecular Dynamics and Density-Functional Theory PHYSICAL REVIEW LETTERS VOLUME 55 2471-2475
    H. Köuppel W. Domcke L. S. Cederbaum Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation Advances in Chemical Physics
    Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133
    Perdew, J.P. and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992. 45(23): p. 13244.
    Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671.
    fcc Brillouin zone, 3d Brillouin Zone with Asymptote: Draw outline of surface AND Bring labels to the front
    Mathematica's ElementData, Wolfram Research, Inc.
    Falong Jia, Xinxing Yu, Lizhi Zhang, Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst Journal of Power Sources 252 (2014) 85-89
    A. Vourros, et al, Carbon dioxide hydrogenation over supported Au nanoparticles: Effect of the support Journal of CO₂ Utilization 19 (2017) 247–256
    Joanna Czaplinska, Izabela Sobczak, and Maria Ziolek Bimetallic AgCu/SBA-15 System: The Effect of Metal Loading and Treatment of Catalyst on Surface Properties J. Phys. Chem. C 2014, 118, 12796−12810

    下載圖示
    QR CODE